Answer:
Some of the effects of a dam on the environment includes;
1) Increase in the amount of the greenhouse gases
2) Removal of the natural wetland and ocean carbon sinks
3) Disruption of the sources of nutrients in the ecosystem
4) Destruction of habitats
5) Raising of the sea levels and waste waters
6) Displace villages and communities
7) Dams have a potential to create flood risk
8) Dams lead to increased water loss due to evaporation and transpiration
9) Dams causes earthquakes
Explanation:
Dams are a source of renewable energy and are a means to prevent floods, however, dams can also have detrimental impact on the climate and the environment.
Current = (voltage) / (resistance)
= (1.5 V) / (0.35 ohms)
= 4.28 Amperes.
==> The battery will not last long.
==> The ammeter is broken ... it's reading less than 0.25 Amps.
Answer:
0.94 m³/s
Explanation:
From the question given above, the following data were obtained:
Air flow (in ft³/min) = 2×10³ ft³/min
Air flow (in m³/s) =.?
Next, we shall convert 2×10³ ft³/min to m³/min. This can be obtained as follow:
35.315 ft³/min = 1 m³/min
Therefore,
2×10³ ft³/min = 2×10³ ft³/min × 1 m³/min / 35.315 ft³/min
2×10³ ft³/min = 56.63 m³/min
Finally, we shall convert 56.63 m³/min to m³/s. This can be obtained as follow:
1 m³/min = 1/60 m³/s
Therefore,
56.63 m³/min = 56.63 m³/min × 1/60 m³/s ÷ 1 m³/min
56.63 m³/min = 0.94 m³/s
Thus, 2×10³ ft³/minis equivalent to 0.94 m³/s.
Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!
Answer:
stars will emit more light due to their Luminosity, so they look very bright.
Explanation:
Luminous refers to..,
- The total amount of energy radiated by a star or other celestial object per second.
- Therefore it is the power output of a star.
Most of the really bright stars in our sky are not that very close to us yet they look bright because of the Luminosity of the star.
These stars are intrinsically so luminous.
A star's power output across all wavelengths is called its bolometric luminosity.
A star with large luminosity will have more measure of radiated electromagnetic power meaning.
so it will emit more light than a low luminosity star.
Hence,
those stars can easily be seen even across great distance.
learn more about Luminosity of the star here:
<u>brainly.com/question/13912549</u>
<u />
#SPJ4