1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
4 years ago
8

Two identical hard spheres, each of mass m and radius r, are released from rest in otherwise empty space with their centers sepa

rated by the distance R. They are allowed to collide under the influence of their gravitational attraction. (a) Find the magnitude of the impulse received by each sphere before they make contact. (b) Find the magnitude of the impulse each receives during their contact if they collide elastically.
Physics
1 answer:
WARRIOR [948]4 years ago
6 0

Answer:

a)   I = √ (2G m³ (1/2r³ - 1/R)), b) I = √ (8 G m³ (1/2r -1/R))

Explanation:

.a) The relation of the Impulse and the moment is

                    I = Δp = m v_{f} - m v₀

We can use Newton's second law with force the force of universal attraction

                  F = ma

                  G m m / r² = m a

                  dv / dt = G m / r²

Suppose re the direction where the spheres move is x

                 dv/dx  dx/dt = G m / x²

                  dv/dx  v = G m / x²

                  v dv = G m dx / x²

We integrate

                   v² / 2 = Gm (-1 / x)

We evaluate this integra from the lower limit v = 0 for x = R to the upper limit, where the spheres v = v and x = 2r are touched

                  v² / 2-0  = G M (-1 / R + 1 / 2r)

                  v = √ [2Gm (1 /2r - 1/ R) ]

The impulse on the sphere is

                 I = m vf - m v₀

                 I = m vf - 0

                 I = m √ (2Gm (1 / 2r-1 / R)

                 I = √ (2G m³ (1/2r³ - 1/R))

b) during the crash each sphere arrives with a velocity v and leaves with a velocity –v, the same magnitude but opposite direction

                      I = m v_{f}- m v₀

                      I = m v - m (-v)

                      I = 2mv

                      I = 2m √ (2Gm (1 / 2r-1 / R)

                      I = √ (8 G m³ (1/2r -1/R))

You might be interested in
An airplane is flying at 635 km per hour at an altitude of 35,000 m. What is its velocity?
Elden [556K]

Distance 350 Km

Time 1 hour

Velocity = 350 : 1 =

350Km/h

your answer is a

5 0
3 years ago
Where is a trench most likely to occur?
Dafna1 [17]
D. convergent plate boundary involving an oceanic plate
7 0
4 years ago
Read 2 more answers
Is it possible to produce a continuous and oriented aramid fiber–epoxy matrix composite having longitudinalandtransverse moduli
Masja [62]

Answer:

Not possible

Explanation:

E_{cl} = longitudinal modulus of elasticity = 35 Gpa

E_{ct} = transverse modulus of elasticity = 5.17 Gpa

E_m = Epoxy modulus of elasticity = 3.4 Gpa

V_{\rho l} = Volume fraction of fibre (longitudinal)

V_{\rho t} = Volume fraction of fibre (transvers)

E_f = Modulus of elasticity of aramid fibers = 131 Gpa

Longitudinal modulus of elasticity is given by

E_{cl}=E_m(1-V_{\rho l})+E_fV_{\rho l}\\\Rightarrow 35=3.4(1-V_{\rho l})+131V_{\rho l}\\\Rightarrow 35=3.4-3.4V_{\rho l}+131V_{\rho l}\\\Rightarrow V_{\rho l}=\frac{35-3.4}{131-3.4}\\\Rightarrow V_{\rho l}=0.24764

Transverse modulus of elasticity is given by

E_{ct}=\frac{E_mE_f}{(1-V_{\rho t})E_f+V_{\rho t}E_m}\\\Rightarrow 5.17=\frac{3.4\times 131}{(1-V_{\rho t})131+V_{\rho t}3.4}\\\Rightarrow \frac{3.4\times 131}{5.17}-131=-127.6V_{\rho t}\\\Rightarrow V_{\rho t}=\frac{\frac{3.4\times 131}{5.17}-131}{-127.6}\\\Rightarrow V_{\rho t}=0.35148

V_{\rho l}\neq V_{\rho t}

Hence, it is not possible to produce a continuous and oriented aramid fiber.

5 0
3 years ago
While standing atop a building 49.6 m tall, you spot a friend standing on a street corner. Using a protractor and a dangling plu
olga nikolaevna [1]

Answer:

75degree don't forget wind and gravity force pulling down

6 0
3 years ago
When is the best time to take a resting heart break
Olegator [25]

Answer:

I believe D

Explanation:

You need to have a more accurate reading and you want to test it multiple times throughout the week though to get a base resting rate.

I hope this is correct good luck!

5 0
3 years ago
Other questions:
  • A child rides her bike at a rate of 12.0 km/hr down the street. A squirrel suddenly runs in front of her so she applies the brak
    10·1 answer
  • You are caulking a window. The caulk is rather thick and, to lay the bead correctly, the exit nozzle is small. A caulking gun us
    14·1 answer
  • In an "atom smasher," two particles collide head on at relativistic speeds. If the velocity of the first particle is 0.741c to t
    10·1 answer
  • A +0.2 µC charge is in an electric field. What happens if that charge is replaced by a +0.4 µC charge?
    8·1 answer
  • 2. A 15 kg mass fastened to the end of a steel wire of un-
    10·1 answer
  • PLEASE HELP ASAP BEST ANSWER WILL BE MARKED BRAINLIEST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    9·1 answer
  • 16. The sum of kinetic energies in an object.
    8·1 answer
  • The si unit of average speed is m.s. True or False. anyone who is right I will give him brainlist if you are sure​
    6·1 answer
  • A number line goes from negative 5 to positive 5. Point D is at negative 4 and point E is at positive 5. A line is drawn from po
    5·2 answers
  • An electric device delivers a current of 5. 0 a for 10 seconds. how many electrons flow through this device?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!