1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
8

Two identical hard spheres, each of mass m and radius r, are released from rest in otherwise empty space with their centers sepa

rated by the distance R. They are allowed to collide under the influence of their gravitational attraction. (a) Find the magnitude of the impulse received by each sphere before they make contact. (b) Find the magnitude of the impulse each receives during their contact if they collide elastically.
Physics
1 answer:
WARRIOR [948]3 years ago
6 0

Answer:

a)   I = √ (2G m³ (1/2r³ - 1/R)), b) I = √ (8 G m³ (1/2r -1/R))

Explanation:

.a) The relation of the Impulse and the moment is

                    I = Δp = m v_{f} - m v₀

We can use Newton's second law with force the force of universal attraction

                  F = ma

                  G m m / r² = m a

                  dv / dt = G m / r²

Suppose re the direction where the spheres move is x

                 dv/dx  dx/dt = G m / x²

                  dv/dx  v = G m / x²

                  v dv = G m dx / x²

We integrate

                   v² / 2 = Gm (-1 / x)

We evaluate this integra from the lower limit v = 0 for x = R to the upper limit, where the spheres v = v and x = 2r are touched

                  v² / 2-0  = G M (-1 / R + 1 / 2r)

                  v = √ [2Gm (1 /2r - 1/ R) ]

The impulse on the sphere is

                 I = m vf - m v₀

                 I = m vf - 0

                 I = m √ (2Gm (1 / 2r-1 / R)

                 I = √ (2G m³ (1/2r³ - 1/R))

b) during the crash each sphere arrives with a velocity v and leaves with a velocity –v, the same magnitude but opposite direction

                      I = m v_{f}- m v₀

                      I = m v - m (-v)

                      I = 2mv

                      I = 2m √ (2Gm (1 / 2r-1 / R)

                      I = √ (8 G m³ (1/2r -1/R))

You might be interested in
Planet, , galaxy, universe. What is missing in the ordered sequence of the cosmos? A. Sun, B. Earth, C. Nebulae, D. Solar system
Artemon [7]
D; solar system, because the planets are inside it.
8 0
3 years ago
Read 2 more answers
A copper rod of length 27.5 m has its temperature increases by 35.9 degrees celsius. how much does its length increase?(unit=m)
gavmur [86]
<h2>The increase in length = 1.87 x 10⁻²</h2>

Explanation:

When copper rod is heated , its length increases

The increase in length can be found by the relation

L = L₀ ( 1 + α ΔT )

here L is the increased length and L₀ is the original length

α  is the coefficient of linear expansion and ΔT is the increase in temperature .

The increase in length = L - L₀ = L₀ x α ΔT

Substituting all these value

Increase in length = 27.5 x 1.7 x 10⁻⁵ x 35.9

= 1.87 x 10⁻² m

5 0
3 years ago
Read 2 more answers
What actions can be explained by physics?
Vesna [10]
Всяко действие има равно по големина и противоположно по посока противодействие.
7 0
3 years ago
A 2 kg, frictionless block is attached to a horizontal, ideal spring with spring constant 300 N/m. At t = 0 the spring is neithe
schepotkina [342]

Answer:

Explanation:

Given that,

Mass of block

M = 2kg

Spring constant k = 300N/m

Velocity v = 12m/s

At t = 0, the spring is neither stretched nor compressed. Then, it amplitude is zero at t=0

xo = 0

It velocity is 12m/s at t=0

Then, it initial velocity is

Vo = 12m/s

Then, amplitude is given as

A = √[xo + (Vo²/ω²)]

Where

xo is the initial amplitude =0

Vo is the initial velocity =12m/s

ω is the angular frequency and it can be determine using

ω = √(k/m)

Where

k is spring constant = 300N/m

m is the mass of object = 2kg

Then,

ω = √300/2 = √150

ω = 12.25 rad/s²

Then,

A = √[xo + (Vo²/ω²)]

A = √[0 + (12²/12.5²)]

A = √[0 + 0.96]

A = √0.96

A = 0.98m

4 0
3 years ago
What are Earth's mineral resources and how long might<br> reserves last?
amm1812
Reserves might last 53.3 years.

Earth’s mineral resources:

3 0
2 years ago
Other questions:
  • What causes a material to be classified as ferromagnetic?
    13·1 answer
  • If a wave hits a smooth surface at an angle of incidence of 40 degrees, the angle of reflection is
    14·2 answers
  • How is force, work, and distance the related
    9·1 answer
  • Calculate the kinetic energy of a particle with a
    13·1 answer
  • Which type of nuclear decay emits two protons and two neutrons?
    10·1 answer
  • Which equations can be used to solve for acceleration? Check all that apply.<br><br>t = ​
    14·2 answers
  • Explain why increasing the mass of a car affects how the car rolls down a ramp.
    7·2 answers
  • A block with a mass of 0.26 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until
    10·2 answers
  • Does anyone know the answer to this page and the next one that it has?
    5·1 answer
  • These two pls :)))) ill mark brainliest :)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!