1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
8

Two identical hard spheres, each of mass m and radius r, are released from rest in otherwise empty space with their centers sepa

rated by the distance R. They are allowed to collide under the influence of their gravitational attraction. (a) Find the magnitude of the impulse received by each sphere before they make contact. (b) Find the magnitude of the impulse each receives during their contact if they collide elastically.
Physics
1 answer:
WARRIOR [948]3 years ago
6 0

Answer:

a)   I = √ (2G m³ (1/2r³ - 1/R)), b) I = √ (8 G m³ (1/2r -1/R))

Explanation:

.a) The relation of the Impulse and the moment is

                    I = Δp = m v_{f} - m v₀

We can use Newton's second law with force the force of universal attraction

                  F = ma

                  G m m / r² = m a

                  dv / dt = G m / r²

Suppose re the direction where the spheres move is x

                 dv/dx  dx/dt = G m / x²

                  dv/dx  v = G m / x²

                  v dv = G m dx / x²

We integrate

                   v² / 2 = Gm (-1 / x)

We evaluate this integra from the lower limit v = 0 for x = R to the upper limit, where the spheres v = v and x = 2r are touched

                  v² / 2-0  = G M (-1 / R + 1 / 2r)

                  v = √ [2Gm (1 /2r - 1/ R) ]

The impulse on the sphere is

                 I = m vf - m v₀

                 I = m vf - 0

                 I = m √ (2Gm (1 / 2r-1 / R)

                 I = √ (2G m³ (1/2r³ - 1/R))

b) during the crash each sphere arrives with a velocity v and leaves with a velocity –v, the same magnitude but opposite direction

                      I = m v_{f}- m v₀

                      I = m v - m (-v)

                      I = 2mv

                      I = 2m √ (2Gm (1 / 2r-1 / R)

                      I = √ (8 G m³ (1/2r -1/R))

You might be interested in
A layer of oil (n = 1.38) floats on an unknown liquid. A ray of light originates in the oil and passes into the unknown liquid.
Vinil7 [7]

Answer:

Refractive index of unknown liquid = 1.56

Explanation:

Using Snell's law as:

n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}

Where,  

{\theta_i}  is the angle of incidence  ( 65.0° )

{\theta_r} is the angle of refraction  ( 53.0° )

{n_r} is the refractive index of the refraction medium  (unknown liquid, n=?)

{n_i} is the refractive index of the incidence medium (oil, n=1.38)

Hence,  

1.38\times {sin65.0^0}={n_r}\times{sin53.0^0}

Solving for {n_r},

Refractive index of unknown liquid = 1.56

4 0
3 years ago
Pls answer quick I need to get the answer rn
lora16 [44]
I think it is False because as the Gad relajases fuel it doesn’t move as much anymore
3 0
2 years ago
types of plate boundaries where two plates separate or move apart?? does anyone know please help ??????
Shtirlitz [24]
Erosion i belive it is called
7 0
3 years ago
Read 2 more answers
Calculate the wave length of a water wave with a speed of 20 m/s and a frequency of 2.5 Hz
12345 [234]

Wavelength of the water wave is 8 m

Explanation:

  • Wavelength measures the distance between two successive crests or troughs of the wave. It is given by the following equation

λ = v/f, where f is the frequency, v is the velocity of the wave

Here, v = 20 m/s and f = 2.5 Hz

⇒ λ = 20/2.5

      = 8 m

5 0
2 years ago
I NEED HELP ASAP!!!!!
Ratling [72]

Answer:

D) momentum of cannon + momentum of projectile= 0

Explanation:

The law of conservation of momentum states that the total momentum of an isolated system is constant.

In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

p_i = p_f

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

p_i = 0

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:

p_f = p_{cannon}+p_{projectile} =0

6 0
3 years ago
Other questions:
  • an object 8.25 cm from a lens creates a virtual image of magnification 2.40 what is the focal length of the lens (mind your minu
    13·1 answer
  • You drop a 0.375 kg ball from a height of 1.37 m. It hits the ground and bounces up again to a height of 0.67 m. How much energy
    7·1 answer
  • In which state of matter is there no particle motion
    8·1 answer
  • An elephant lifts 7 large logs from the ground to a container 5 meters above the ground as part of a zoo demonstration. The elep
    6·1 answer
  • Helen sees Andy at the dance that she crush on and decides to chase him down. Find speed if she runs 87.3m in 4.9s
    14·1 answer
  • All of the following are ways in which sedimentary rocks form EXCEPT
    11·1 answer
  • What is the acceleration of a 10.5 kg mass pushed by a 50.5 n force
    8·1 answer
  • . . The proper dish washing sequence for a three compartment sink is?. A.scrape or spray, wash, rinse, sanitize, towel dry. b.sc
    6·1 answer
  • When the Moon orbits Earth, what is the centripetal force?
    8·1 answer
  • . Calculate the magnetic force on a current carrying conductor.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!