Answer:
pH = 10.38
Explanation:
∴ molar mass C9H13N = 135.21 g/mol
∴ pKb = - log Kb = 4.2
⇒ Kb = 6.309 E-5 = [OH-][C9H20O3N+] / [C9H13N]
∴ <em>C</em> sln = (205 mg/L )*(g/1000 mg)*(mol/135.21 g) = 1.516 E-3 M
mass balance:
⇒ <em>C</em> sln = 1.516 E-3 = [C9H20O3N+] + [C9H13N]......(1)
charge balance:
⇒ [C9H20O3N+] + [H3O+] = [OH-]; [H3O+] is neglected, come from water
⇒ [C9H20O3N+] = [OH-].......(2)
(2) in (1):
⇒ [C9H13N] = 1.516 E-3 - [OH-]
replacing in Kb:
⇒ Kb = 6.3096 E-5 = [OH-]² / (1.516 E-3 - [OH-])
⇒ [OH-]² + 6.3096 E-5[OH] - 7.26613 E-8 = 0
⇒ [OH-] = 2.3985 E-4 M
∴ pOH = - Log [OH-]
⇒ pOH = 3.62
⇒ pH = 14 - pOH = 14 - 3.62 = 10.38
Pretty sure it’s a chemical change.
pH is a symbolic representation of:

and for water we now that:

that means the text give us the information to calculate the concentration of protons and therefore the concentration of ions OH-:

therefore the concentration of OH- can be calculated:

but they are not asking about the concetration of OH- they ask about concentration of Ba(OH)2 and for that we need to know the disolution stechiometry

Whic mean the concentration of Ba(OH)2 is half the concentration of OH-:
Answer:
Explanation:
Start with the number of grams of each element, given in the problem.
Convert the mass of each element to moles using the molar mass from the periodic table.
Divide each mole value by the smallest number of moles calculated.
Round to the nearest whole number. This is the mole ratio of the elements and is.