Bc they dooooooooooooooooooo
Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Answer:
s = d÷ t
Explanation:
Where s means speed, d means distance and t means time
Hey there!
The correct answer is C
Hope this helps you!
Always remember, you are a Work Of Art!
- Nicole :) <3
Explanation:
It is known that
value of acetic acid is 4.74. And, relation between pH and
is as follows.
pH = pK_{a} + log ![\frac{[CH_{3}COOH]}{[CH_{3}COONa]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOOH%5D%7D%7B%5BCH_%7B3%7DCOONa%5D%7D)
= 4.74 + log 
So, number of moles of NaOH = Volume × Molarity
= 71.0 ml × 0.760 M
= 0.05396 mol
Also, moles of
= moles of 
= Molarity × Volume
= 1.00 M × 1.00 L
= 1.00 mol
Hence, addition of sodium acetate in NaOH will lead to the formation of acetic acid as follows.

Initial : 1.00 mol 1.00 mol
NaoH addition: 0.05396 mol
Equilibrium : (1 - 0.05396 mol) 0 (1.00 + 0.05396 mol)
= 0.94604 mol = 1.05396 mol
As, pH = pK_{a} + log ![\frac{[CH_{3}COONa]}{[CH_{3}COOH]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DCOONa%5D%7D%7B%5BCH_%7B3%7DCOOH%5D%7D)
= 4.74 + log 
= 4.69
Therefore, change in pH will be calculated as follows.
pH = 4.74 - 4.69
= 0.05
Thus, we can conclude that change in pH of the given solution is 0.05.