1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
9

The radius of curvature of both sides of a converging lens is 18 cm. One side of the lens is coated withsilver so that the inner

surface is reflective. When light is incident on the uncoated side it passes throughthe lens, reflects off the silver coating, and passes back through the lens. The overall effect is that of amirror with focal length 5.0 cm. What is the index of refraction of the lens material
Physics
1 answer:
Dahasolnce [82]3 years ago
7 0

Answer:

n = 1.4

Explanation:

Given,

R1 = 18 cm, R2 = -18 cm

From lens makers formula

1/f = (n - 1)(1/18 + 1/18) = (n-1)/9

f = 9/(n-1)

Power, P = 1/f ( in m) = (n-1)/0.09

Now, this lens is in with conjunction with a concave mirror which then can be thought of as to be in conjunction with another thin lens

Power of concave mirror = P' = 1/f ( in m) = 2/R = 2/0.18 = 1/0.09

Net power of the combination = 2P + P' = 2(n-1)/0.09 + 1/0.09 = 1/0.05

n = 1.4

You might be interested in
A transformer has a primary coil with 106 turns and a secondary coil of 340 turns. The AC voltage across the primary coil has a
UkoKoshka [18]

To solve this problem it is necessary to apply the concepts related to transformers, that is to say passive electrical device that transfers electrical energy from one electrical circuit to one or more circuits.

From the mathematical definition we have that the relationship between the voltage of the first coil and the second coil is proportional to the number of loops of the first and second loop, that is:

\frac{V_s}{V_p} = \frac{N_s}{N_p}

Where

V_p =  input voltage on the primary coil.

V_s=input voltage on the secondary coil.

N_p=  number of turns of wire on the primary coil.

N_s = number of turns of wire on the secondary  coil.

Replacing our values we have:

V_p = 128V

N_p = 106

N_s = 340

Replacing,

\frac{V_s}{128} = \frac{340}{106}

V_s = 410.56V

From the same relations of number of turns and the voltage of the first and second coil we also have the relation of electricity and voltage whereby:

V_s I_s = V_p I_p

Where

I_p= Current Primary Coil

I_s = Current secundary Coil

Therefore:

I_s = \frac{V_p I_p}{V_s}

I_s = \frac{(128)(6)}{410.56}

I_s = 1.87 A

Therefore the maximum values for the secondary coil of the voltage is 410.56V and Current is 1.87A

5 0
3 years ago
3. How long will it take a ball to reach the ground if it falls from a cliff 25 m tall (starting from rest)? What if the ball we
Nady [450]

Answer:

2.26 s

Explanation:

Let's take down to be positive.

Given (in the y direction):

Δy = 25 m

v₀ = 0 m/s

a = 9.8 m/s²

Find: t

Δy = v₀ t + ½ at²

25 m = (0 m/s) t + ½ (9.8 m/s²) t²

25 = 4.9t²

t = 2.26 s

If the ball instead had an initial horizontal velocity of 5 m/s, its initial vertical velocity is still 0 m/s.  So the time to fall is still 2.26 s.

4 0
3 years ago
A magnetic field of 37.2 t has been achieved at the mit francis bitter national magnetic laboratory. Find the current needed to
jeka57 [31]

Answer:

Here is the complete question:

https://www.chegg.com/homework-help/questions-and-answers/magnetic-field-372-t-achieved-mit-francis-bitter-national-magnetic-laboratory-find-current-q900632

a) Current for long straight wire  =3.7\ MA

b) Current at the center of the circular coil =2.48\times 10^{5}\ A

c) Current near the center of a solenoid 236.8\ A

Explanation:

⇒ Magnetic Field due to long straight wire is given by (B),where B=\frac{\mu\times I}{2\pi(r) },so\ I=\frac{B\ 2\pi(r)}{\mu}

\mu=4\pi \times 10^{-7}\ \frac{henry}{m}

Plugging the values,

Conversion 1\times 10^6 A = 1\ MA,and 2cm=\frac{2}{100}=0.02\ m

I=\frac{37.2\times \ 2\pi(0.02)}{4\ \pi \times (10^{-7})}=3.7\ MA

⇒Magnetic Field at the center due to circular coil (at center) is given by,B=\frac{\mu\times I (N)}{2(a)}

So I= \frac{2B(a)}{\mu\ N} = \frac{2\times 37.2\times 0.42}{4\pi\times 10^{-7}\times 100}=2.48\time 10{^5}\ A

⇒Magnetic field due to the long solenoid,B=\mu\ nI=\mu (\frac{N}{l})I

Then I=\frac{B}{\mu(\frac{N}{L})} \approx 236.8\A  

So the value of current are  3.7 MA,2.48\times 10^{5} A and 236.8\ A respectively.

8 0
3 years ago
A projector is placed on the ground 22 ft. away from a projector screen. A 5.2 ft. tall person is walking toward the screen at a
Stella [2.4K]

Answer:

y = 67.6 feet,   y = 114.4/ (22 - 3t)

Explanation:

For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram

Large triangle Projector up to the screen

         tan θ = y / L

For the small triangle. Projector up to the person

         tan θ = y₀ / (L-d)

The angle is the same, so we equate the two equations

         y₀ / (L -d) = y / L

         y = y₀  L / (L-d)

The distance from the screen (d), we look for it with kinematics

         v = d / t

        d = v t

we replace

         y = y₀ L / (L - v t)

         y = 5.2 22 / (22 - 3 t)

         y = 114.4 (22 - 3t)⁻¹

This is the equation of the shadow height change as a function of time

For the suggested distance the shadow has a height of

           y = 114.4 / (22-13)

           y = 67.6 feet

7 0
3 years ago
Two particles with oppositely signed charges are held a fixed distance apart. The charges are equal in magnitude and they exert
damaskus [11]

Answer:

the force will decrease to 3/4 of its original value.

Explanation:

The initial electric force between the two charges is:

F = k \frac{q\cdot q}{r^2}

where

k is the Coulomb's constant

q is the magnitude of each charge

r is their separation

Later, half of one charge is transferred to the other charge; this means that one charge will have a charge of

q+\frac{q}{2}=\frac{3}{2}q

while the other charge will be

q-\frac{q}{2}=\frac{q}{2}

So, the new force will be

F' = k \frac{(\frac{q}{2})\cdot (\frac{3}{2}q)}{r^2}=\frac{3}{4} (k\frac{q\cdot q}{r^2})=\frac{3}{4}F

So, the force will decrease to 3/4 of its original value.

6 0
3 years ago
Other questions:
  • Surface tension _____.
    7·1 answer
  • What phase are daughter cells in as a result of mitosis
    14·1 answer
  • A strong lightning bolt transfers an electric charge of about 31 C to Earth (or vice versa). How many electrons are transferred?
    15·1 answer
  • Kathy tests her new sports car by racing with Stan, an experienced racer. Both start from rest, but Kathy leaves the starting li
    11·1 answer
  • A sequence of pitches occurring one after another is perceived: A. horizontally B. vertically C. texturally D. mechanically
    15·1 answer
  • Can anyone provide me the answer with explanation?​
    8·2 answers
  • The tendency for an object to sink or float has to do with the object's density.<br> True<br> False
    7·1 answer
  • A 32 kg object has a momentum of 480 kg m/s northward. What is the
    11·2 answers
  • How to correct dimensions of <br><br>capillary rise of liquid in a tube​
    15·1 answer
  • suppose a block of lead of mass 0.4kg at temperature of 95°C is dropped in a 2 kg of water originally at 20°C in a container. wh
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!