4) You know slope-intercept form is y=mx+b. So using these two given points, you can find the slope!
(-8,5) (-3,10) [Use the y1-y2 over x1-x2 formula to solve for slope]
10 - 5 5
--------- = ----- = 1
-3-(-8) 5
Hurray! You got a slope of one. Now substitute this back into your original equation:
y=mx+b --> y=1x+b
Next, we find what our "b" is, or what our y-intercept is:
Using one of the previous points given, substitute them into the new equation:
[I used the point (-3, 10) ]
y=1x+b
10=1(-3)+b SUBSTITUTE
10=-3+b MULTIPLY
10=-3+b
+3 +3 ADD
----------
13=b SIMPLIFY
So, now we have our y-intercept. Use this and plug it into the equation:
y=1x+b --> y=1x+13
y=1x+13 is our final answer.
5) So for perpendicular lines, your slope will be the opposite reciprocal of the original slope. (Ex: Slope is 2, but perpendicular slope is -1/2)
We have the equation y= 3x-1, so find the reciprocal slope!
--> y=-1/3x-1
Good! Now we take our given point, (9, -4) and plug it into the new equation:
y=-1/3x-1
-4=-1/3(9)+b SUBSTITUTE and revert "-1" to "b", for we are trying to find the y- -4=-3+b intercept of our perpendicular equation.
+3 +3 ADD
--------
-1=b SIMPLIFY
So, our final answer is y=-1/3x+(-1)
6) I don't know, sorry! :(
The answer is 8.45498149331, you can round it to the nearest thousandths place though, too.
Answer:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
Step-by-step explanation:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
I think the area of this triangle is 27.1 square cm. Hope it help!
Parallel = same slope
y = -2/3x + b
Plug in point
15 = -2/3(-3) + b
15 = 2 + b, b = 13
Solution: y = -2/3x + 13