In order to solve the total pressure that is exerted by the gases, we need to use the Dalton's Law of Partial pressures. These are the calculations that you need to find out the total amount of pressure exerted to the gases:
3.00atm (N2) + 1.80atm (O2) + 0.29atm (Ar) + 0.18atm (He) + 0.10atm (H),
add up all of that, and the answer would turn out to be: 5.37atm.
Answer: 2 SO2 (g) + O2 (g) Kp = 7.69 If a vessel at this temperature initially ... and if the partial pressure of sulfur trioxide at equilibrium is 0.100 atm,
Explanation:
Answer: 84.56L
Explanation:
Initial volume of gas V1 = 100L
Initial temperature T1 = 135°C
Convert temperature in Celsius to Kelvin
( 135°C + 273 = 408K)
Final temperature T2 = 72°C
( 72°C + 273= 345K)
Final volume V2 = ?
According to Charle's law, the volume of a fixed mass of a gas is directly proportional to the temperature.
Mathematically, Charles' Law is expressed as: V1/T1 = V2/T2
100L/408K = V2/345K
To get the value of V2, cross multiply
100L x 345K = V2 x 408K
34500 = V2 x 408K
V2.= 34500/408
V2 = 84.56L
Thus, the volume of the gas becomes 84.56 liters