Option (i) would have the highest 2nd Ionization Energy.
Option (i) is Sodium.
Can be Written as 2, 8 , 1
For its 1st Ionization energy... It'd be extremely easy to remove that Electron cos its on the outermost shell.
Now After Removing that Electron...
Sodium's Electronic Configuration Reduces to that of Neon Which is 2, 8.
Neon has a very stable Octet.
It would take an ENORMOUS amount of energy to break its Octet stability... that is... Remove 1 electron from its Octet.
So
Option (i) [Sodium] has the highest 2nd Ionization Energy
We are asked to solve for the arc length of the intercepted arc and the formula is shown below:
Arc length = 2*pi*r(central angle/360°)
r = 5 feet
central angle = 10°
Solving for the arc length, we have:
Arc length = 2*3.14*5 (10/360)
Arc length = 0.872 feet
The arc length is 0.872 feet.
The answers are low concentrated (dilute) and high concentrated respectively.
As the low concentrated salt solution has a higher water potential than that of the high concentrated salt solution, water molecules will flow from the region of higher water potential to the region of lower water potential, thus from the dilute salt solution to the high concentrated salt solution. This is due to the movement called osmosis. Note that osmosis also requires water to flow through a differentially permeable membrane, which means the membrane can allow certain substances (not all) to go in or out. If the differentially permeable membrane is not present, the movement of water molecules may be regarded as diffusion.
Therefore, the answers for the blanks are low concentrated and high concentrated.
The radius of the anion is 7.413 nm
<h3>How to calculate the force of attraction between charges</h3>
The force of attraction (F) is given by the formula:
- F = (1/4π∈r²)(Zc*e)(Za*e)
where:
∈ = permittivity of free space = 8.85*10⁻¹⁵ F/m
Zc = charge on the cation = +2
Zc = charge on the anion = -2
e = charge on an electron = 1.602 * 10⁻¹⁹ C
r = interionic distance
r = rc + ra
where rc and ra are the radius of the cation and anion respectively
F = 1.64 * 10⁻⁸ N
Therefore based on the equation of force of attraction:
1.64 *10⁻⁸ = [1/4π(8.85*10⁻¹⁵)r²](2 * 1.602*10⁻¹⁹)²
r² = 5.63 * 10⁻¹⁷
r = 7.50 nm
Since r = rc + ra
where rc = 0.087 nm
thus, ra = r - rc = 7.50 - 0.087
ra = 7.413 nm
Therefore, the radius of the anion is 7.413 nm
Learn more about ionic radius at: brainly.com/question/2279609
Answer:
A. to determine the efficiency of the reaction
Explanation:
- Percentage is the ratio of the actual yield to theoretical yield as a percentage. It is calculated by dividing the actual yield by theoretical yield then multiplying by 100%.
- Calculation of percentage yield is important as it helps in the determination of efficiency of a reaction. For example in most industries for the purpose of making the most product with the least waste.
- Additionally, calculating the percentage yield helps in determining other products that may be formed during the reactions.