Answer:
kettles: holes left by glaciers.
cirques: three-sided valleys
erratics: large, out-of-place rocks bouldersleft by glaciers.
drumlins: egg-shaped hills
Explanation: APEX
Well, I'll try to write the formula in a way that's not confusing,
but I'm afraid it might be slightly confusing anyway.
When you're working with dB, the basic rule is
A change of 10 dB means either multiplying or dividing by 10 .
Multiply something by 10 ==> it increases by 10 dB.
Divide something by 10 ==> it decreases by 10 dB.
It turns out that another way to write all of this is . . .
An increase of 10 dB ===> multiply the original amount by 10¹
An increase of 20 dB ===> multiply the original amount by 10²
An increase of, say, 7 dB ===> multiply the original amount by 10⁰·⁷
A decrease of 10 dB ===> multiply the original amount by 10⁻¹
A decrease of 30 dB ===> multiply the original amount by 10⁻³
A decrease of, say, 13 dB ===> multiply the original amount by 10⁻¹·³
This question says: The sound increases by 5 dB .
That means the original 'intensity' or 'power' of the sound
is multiplied by
10⁰·⁵ = √10 = about 3.162 (rounded) .
From the choices listed, the closest one is (c).
I think the answer is periodic motion.
That can only be happening if the mass mysteriously increased somehow. I'd like to know how in the world THAT happened.
Possibly, if you have list of densities and you have to match it. I can't think of any other scenarios in which it would be able to.
Hope I helped! :)