Neutron, neutral subatomic particle that is a constituent of every atomic nucleus except ordinary hydrogen. It has no electric charge and a rest mass equal to 1.67493 × 10−27 kg—marginally greater than that of the proton but nearly 1,839 times greater than that of the electron.
Answer:
Mass = 0.697 g
Explanation:
Given data:
Volume of hydrogen = 1.36 L
Mass of ammonia produced = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Solution:
Chemical equation:
3H₂ + N₂ → 2NH₃
First of all we will calculate the number of moles of hydrogen:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
1atm ×1.36 L = n × 0.0821 atm.L/mol.K × 273.15 K
1.36 atm.L = n × 22.43 atm.L/mol
n = 1.36 atm.L / 22.43 atm.L/mol
n = 0.061 mol
Now we will compare the moles of hydrogen and ammonia:
H₂ : NH₃
3 : 2
0.061 : 2/3×0.061 = 0.041
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.041 mol × 17 g/mol
Mass = 0.697 g
If it’s hydraulic turbine then it’s potential and kinetic energy and if it’s a thermal process then heat energy from the fuel burnt runs the turbine
A physical property of an element is a property of an element that can observed or measured without changing the chemical nature of the element.
A chemical property of an element is a property of an element that can only be observed or measure when the chemical property of the element is altered or changed.
Based on this;
The boiling point of bromine is a physical property of bromine.
The high reactivity of bromine with many elements is a chemical property of bromine.
So a camera can zoom in and out and the human eye has peripheral vision