Answer:
C4H6
Explanation:
See attached table
Convert each of the masses into moles by dividing the mass by the molar mass of that element. That yields 3.83 moles of C and 6 moles of O. I rounded up the C to 4 moles to result in an empirical formula of C4H6
Answer:
I think is b
Explanation:
if im wrong, heres some information:
mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.[1] While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.
The sodium ion becomes hydrated. when sodium chloride dissolves in water, the sodium and chloride ions and the polar water molecules are strongly attracted to one another by ion-dipole interactions
Answer:
0.241 × 10³⁰ molecules
Explanation:
Given data:
Mass of Cr(HCO₃)₃ = 9.273 × 10⁷ g
Number of molecules = ?
Solution:
Number of moles = 9.273 × 10⁷ g/ 235 g/mol
Number of moles = 0.04× 10⁷ mol
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For 0.04× 10⁷ moles of Cr(HCO₃)₃:
0.04× 10⁷ moles × 6.022 × 10²³ molecules / 1 mol
0.241 × 10³⁰ molecules