The density of seawater at a depth where the pressure is 500 atm is 
Explanation:
The relationship between bulk modulus and pressure is the following:

where
B is the bulk modulus
is the density at surface
is the variation of pressure
is the variation of density
In this problem, we have:
is the bulk modulus

is the change in pressure with respect to the surface (the pressure at the surface is 1 atm)
Therefore, we can find the density of the water where the pressure is 500 atm as follows:

Learn more about pressure in a fluid:
brainly.com/question/9805263
#LearnwithBrainly
Answer:
<h2>The angular velocity just after collision is given as</h2><h2>

</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>
Explanation:
As per given figure we know that there is no external torque about hinge point on the system of given mass
So here we will have

now we can say

so we will have


Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass
So we can use angular momentum conservation about the hinge point
Answer:
35%
Explanation:
The car's engine gives off 65% thermal energy
So only 35 % is converted into mechanical energy .
input heat = Q₁ = 100
output heat = Q₂ = 65
Work output = Q₁ - Q₂ = W
W = 100 - 65 = 35
Efficiency = W / Q₁ X 100
= (35/ 100) X 100
= 35%.
Water expands when it freezes (that's why you should never put closed, fully filled water bottles in the freezer !)
Answer:
Book. Bottle. table are some examples of objects in equilibrium found in classroom