Answer: option C) II < III < I
i.e [OH−] < [H3O+] < I
Explanation:
First, obtain the pH value of I and II, then compare both with III.
For I
Recall that pH = -log (H+)
So pH3O = -log (H3O+)
= - log (1x10−5)
= 4
For II
pOH = - log(OH-)
= - log(1x10−10)
= 9
For III
pH = 6
Since, pH range from 1 to 14, with values below 7 to be acidic, 7 to be neutral, above 7 to be alkaline: then, 9 < 6 < 4
Thus, the following solutions from least acidic to most acidic is II < III < I
Answer:
7.12 mm
Explanation:
From coulomb's law,
F = kqq'/r².................... Equation 1
Where F = force, k = proportionality constant, q and q' = The two point charges, r = distance between the two charges.
Make r the subject of the equation,
r = √(kqq'/F).......................... Equation 2
Given: q = q' = 75.0 nC = 75×10⁻⁹ C, F = 1.00 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute into equation 2
r = √[ (75×10⁻⁹ )²9.0×10⁹/1]
r = 75×10⁻⁹.√(9.0×10⁹)
r = (75×10⁻⁹)(9.49×10⁴)
r = 711.75×10⁻⁵
r = 7.12×10⁻³ m
r = 7.12 mm
Hence the distance between the point charge = 7.12 mm
its c with the older down the older it is
It is because in that time science was not established. This is, the experimentation to test hypotheses, which is a fundamental part of the scientific method, was not applied.
Atoms can not be seen, then they could only reflect or philosophize on this matter. This method is not able to give good answers to so complicated scientific matters.
reactions to break down glucose using oxygen to produce carbon dioxide, water and energy in the form of ATP. ... To balance the oxygen atoms for the reactant side, you need to count 6 atoms from the glucose.