Answer:
B. A precipitate will form since Q > Ksp for calcium oxalate
Explanation:
Ksp of CaC₂O₄ is:
CaC₂O₄(s) ⇄ Ca²⁺ + C₂O₄²⁻
Where Ksp is defined as the product of concentrations of Ca²⁺ and C₂O₄²⁻ in equilibrium:
Ksp = [Ca²⁺][C₂O₄²⁻] = 2.27x10⁻⁹
In the solution, the concentration of calcium ion is 3.5x10⁻⁴M and concentration of oxalate ion is 2.33x10⁻⁴M.
Replacing in Ksp formula:
[3.5x10⁻⁴M][2.33x10⁻⁴M] = 8.155x10⁻⁸. This value is reaction quotient, Q.
If Q is higher than Ksp, the ions will produce the precipitate CaC₂O₄ until [Ca²⁺][C₂O₄²⁻] = Ksp.
Thus, right answer is:
<em>B. A precipitate will form since Q > Ksp for calcium oxalate</em>
<em></em>
Explanation:
The equation for the average is: (sum of all data values/ (total number of data values)
Answer:
20L is the new volume
Explanation:
In this case, moles and T° from the gas remain constant. This is the formula we must apply, to solve this:
P₁ . V₁ = P₂ . V₂
5 atm . 10 L = P₂ . 2.5L
P₂ = (5 atm . 10 L) / 2.5L →20L
Answer:
Group of highly-reactive chemical elements. The alkali metals are a group (column) in the periodic table consisting of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr).