Spring C stretches 100 cm.
Explanation:
The spring constant is simply the stiffness of the spring. The higher the spring constant the more stiff the spring is.
Spring constant shows the force needed to stretch a spring from it's equilibrium position. If a material requires more force to cause it to stretch, it will have a high spring constant.
According to hooke's law "the force needed to extended an elastic material is directly proportional to its extension"
F = ke
k is the spring constant
e is the extension
We see that the spring that stretches by 100 is the less stiff compared to other springs. It has the smallest spring constant.
Learn more;
Force brainly.com/question/8882476
#learnwithBrainly
The difference between the two is, well for one
Spectrum: The entire range that the "<em>waves" </em>could be such, as visible light, x-ray's and so on.
Waves: These are different because they aren't telling you or showing the entire spectrum just which they length that they are.
<em>It may confuse you but it makes sense to me (Sorry)</em>
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.
Answer:
q = 400 nC
the correct answer is b
Explanation:
The expression for the electric potential of a point charge is
V = k q / r
they ask us for the electrical charge
q = V r / k
let's calculate
Q = 600 6.0 / 9 10⁹
Q = 4 10⁻⁷ C
let's reduce to nC
Q = 4 10⁻⁷ C (10⁹ nC / 1C)
q = 4 10² nC = 400 nC
the correct answer is b
Traslate
La expresión para el potencial eléctrico de una carga puntual es
V = k q/r
nos piden la carga eléctrica
q= V r /k
calculemos
Q= 600 6,0 / 9 10⁹
Q= 4 10⁻⁷ C
reduzcamos a nC
Q = 4 10⁻⁷ C(10⁹ nC/1C )
q = 4 10² nC = 400 nC
la respuesta correcta es b