Answer: a) 19.21m b) 3.92secs
Explanation:
a) Maximum height reached by the object is the height reached by an object before falling freely under gravity.
Maximum height = U²/2g
U is the initial velocity = 19.6m/s
g is acceleration due to gravity = 10m/s²
Maximum Height = 19.6²/2(10)
H = 19.21m
b) The time elapsed before the stone hits the ground is the time of flight T= 2U/g
T= 2(19.6)/10
T = 39.2/10
Time elapsed is 3.92secs
Answer:
5.31143691523 m/s²
Explanation:
m = Mass = 280 g
x = Displacement of spring = 21.7 cm
Time period

Angular velocity is given by


From Hooke's law

The acceleration due to gravity on the planet is 5.31143691523 m/s²
Yes, I have been able to satisfy my curiosity.
The image distance can be determined using the mirror equation: 1/f = 1/d_o + 1/d_i, where, f is the focal length, d_o is the object distance, and d_i is the image distance. Given that f = 28.2 and d_o = 33.2 cm, the value of d_i is calculated to be 187.248 cm. On the other hand, the image height is obtained using the magnification equation wherein, h_i/h_o = -d_i/d_o, where h_i is the image height and h_o is the object height. Using the given values, h_i is equal to -26.79 cm. Note that the negative sign indicates that the image is inverted.
A robot character that can transform into a car