Answer:
b) Projectile MOTION
Explanation:
SHM is periodic motion or to and fro motion of a particle about its mean position in a straight line
In this type of motion particle must be in straight line motion
So here we can say
a) Simple Pendulum : it is a straight line to and fro motion about mean position so it is a SHM
b) Projectile motion : it is a parabolic path in which object do not move to and fro about its mean position So it is not SHM
d) Spring Motion : it is a straight line to and fro motion so it is also a SHM
So correct answer will be
b) Projectile MOTION
Answer:
Explanation:
The standard equation of the sinusoidal wave in one dimension is given by

Here, A be the amplitude of the wave
λ be the wavelength of the wave
v be the velocity of the wave
Φ be the phase angle
x be the position of the wave
t be the time
this wave is travelling along positive direction of X axis
The frequency of wave is f which relates with velocity and wavelength as given below
v = f x λ
The relation between the time period and the frequency is
f = 1 / T.
Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Answer:
1.758820×10^11(-2.5i-0.8j) m/s^2
Explanation:
From the question, the parameters given are; E=(2.80i+ 5.20j) v/m, a uniform magnetic field,B= 0.400K T, acceleration, a= ??? and velocity vector, v= 11.0i metre per seconds (m/s)...
We can solve this problem using the formula below;
Ma= q[E+V × B] ---------------(1).
Note: q is negative, m= mass of electron.
Making acceleration,a the subject of the formula and substituting the parameters into equation (1);
a= -e/m × (2.5i + 5.2j +11.0i × 0.400K)
a= -e/m × (2.5i+5.2j-4.4j)
a= e/m × (-2.5i - 0.8j)
e/m= 1.758820×10^11 c/kg
Therefore, slotting in the value of charge to mass(e/m) ratio;
a= 1.7588×10^11×(-2.5i-0.8j) m/s^2