1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
13

What was the name of the voyages taken by Zheng he during the Ming dynasty on behalf of China

Physics
1 answer:
telo118 [61]3 years ago
6 0

Answer:

Ming treasure voyages

Explanation:

You might be interested in
John runs around a 126.5 m circular track 3.5 times in 4.17 minutes. What is his average speed?
sdas [7]
Average speed = distance traveled / time

average speed  = (126.5 m * 3.5 laps) / (4.17 min)

= 106.2 m/min
6 0
3 years ago
Familiarize yourself with the map showing the DSDP Leg 3 drilling locations and the position of the mid-ocean ridge (Figure 1 to
Inga [223]

Answer:

For more than 40 years, results from scientific ocean drilling have contributed to global understanding of Earth’s biological, chemical, geological, and physical processes and feedback mechanisms. The majority of these internationally recognized results have been derived from scientific ocean drilling conducted through three programs—the Deep Sea Drilling Project (DSDP; 1968-1983), the Ocean Drilling Program (ODP; 1984-2003), and the Integrated Ocean Drilling Program (IODP; 2003-2013)—that can be traced back to the first scientific ocean drilling venture, Project Mohole, in 1961. Figure 1.1 illustrates the distribution of drilling and sampling sites for each of the programs, and Appendix A presents tables of DSDP, ODP, and IODP legs and expeditions. Although each program has benefited from broad, international partnerships and research support, the United States has taken a leading role in providing financial continuity and administrative coordination over the decades that these programs have existed. Currently, the United States and Japan are the lead international partners of IODP, while a consortium of 16 European countries and Canada participates in IODP under the auspices of the European Consortium for Ocean Research Drilling (ECORD). Other countries (including China, Korea, Australia, New Zealand, and India) are also involved.

As IODP draws to a close in 2013, a new process for defining the scope of the next phase of scientific ocean drilling has begun. Illuminating Earth’s Past, Present, and Future: The International Ocean Discovery Program Science Plan for 2013-20231 (hereafter referred to as “the science plan”), which is focused on defining the scientific research goals of the next 10-year phase of scientific ocean drilling, was completed in June 2011 (IODP-MI, 2011). The science plan was based on a large, multidisciplinary international drilling community meeting held in September 2009.2 A draft of the plan was released in June 2010 to allow for additional comments from the broader geoscience community prior to its finalization. As part of the planning process for future scientific ocean drilling, the National Science Foundation (NSF) requested that the National Research Council (NRC) appoint an ad hoc committee (Appendix B) to review the scientific accomplishments of U.S.-supported scientific ocean drilling (DSDP, ODP, and IODP) and assess the science plan’s potential for stimulating future transformative scientific discoveries (see Box 1.1 for Statement of Task). According to NSF, “Transformative research involves ideas, discoveries, or tools that radically change our understanding of an important existing scientific or engineering concept or educational practice or leads to the creation of a new paradigm or field of science, engineering, or education. Such research challenges current understanding or provides pathways to new frontiers.”3 This report is the product of the committee deliberations on that review and assessment.

HISTORY OF U.S.-SUPPORTED SCIENTIFIC OCEAN DRILLING, 1968-2011

The first scientific ocean drilling, Project Mohole, was conceived by U.S. scientists in 1957. It culminated in drilling 183 m beneath the seafloor using the CUSS 1 drillship in 1961. During DSDP, Scripps Institution of Oceanography was responsible for drilling operations with the drillship Glomar Challenger. The Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES), which initially consisted of four U.S. universities and research institutions, provided scientific advice. Among its numerous achievements, DSDP

Explanation:

7 0
3 years ago
Electromagnetic induction means that moving a magnet through a loop of wire creates an electric current.
MAVERICK [17]
False. An Electromagnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field.
4 0
3 years ago
Read 2 more answers
Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m
Julli [10]

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}.....(I)

tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}....(II)

Put the value of \omega=0.628\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}

A=0.0198

From equation (II)

tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}

d=0.0023

Put the value of \omega=3.14\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}

A=0.0203

From equation (II)

tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}

d=0.0120

Put the value of \omega=6.28\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}

A=0.0209

From equation (II)

tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}

d=0.0257

Put the value of \omega=9.42\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}

A=0.0217

From equation (II)

tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}

d=0.0413

Hence, This is the required solution.

5 0
3 years ago
How many days does it take for a free to grow?
vovikov84 [41]
Idk what is growing but if it’s a free than c
7 0
3 years ago
Other questions:
  • Listed following are three possible models for the long-term expansion (and possible contraction) of the universe in the absence
    13·1 answer
  • Convert 5.7 miles to km
    5·2 answers
  • What is the difference between a direct current and an alternating current?
    13·2 answers
  • When an object is lifted against the force of gravity it has gravitational potential energy. The energy depends on the object's
    12·2 answers
  • I have this sheet and I don’t understand any of it at all
    10·1 answer
  • which of the following describes the principle of conversation of charge? a.charge is created b. a charge can be transferred c.
    15·1 answer
  • Which galaxy is the most stretched out?<br>​
    9·2 answers
  • In the United States, household electric power is provided at a frequency of 60 HzHz, so electromagnetic radiation at that frequ
    6·1 answer
  • my bf coming over after school and i still have no idea what to cook or make for him i can make almost everything but i have no
    5·1 answer
  • A current of 2.0 A flows through a circuit containing a motor with a resistance of 12 ohm how much energy is converted if the mo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!