Let us examine the given situations one at a time.
Case a. A 200-pound barbell is held over your head.
The barbell is in static equilibrium because it is not moving.
Answer: STATIC EQUILIBRIUM
Case b. A girder is being lifted at a constant speed by a crane.
The girder is moving, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case c: A jet plane has reached its cruising speed at an altitude.
The plane is moving at cruising speed, but not accelerating. It is in dynamic equilibrium.
Answer: DYNAMIC EQUILIBRIUM
Case d: A box in the back of a truck doesn't slide as the truck stops.
The box does not slide because the frictional force between the box and the floor of the truck balances out the inertial force. The box is in static equilibrium.
Answer: STATIC EQUILIBRIUM
Mechanical digestion is chewing, and chemical digestion is the saliva in your mouth breaking down food.
Answer:
The minimum wall thickness required for the spherical tank is 0.0189 m
Explanation:
Given data:
d = inside diameter = 8.1 m
P = internal pressure = 1.26 MPa
σ = 270 MPa
factor of safety = 2
Question: Determine the minimum wall thickness required for the spherical tank, tmin = ?
The allow factor of safety:

The minimun wall thickness:

Answer:
The change in current at
is 
Explanation:
From the question we are told that
The resistance is 
The current is 
The change in voltage with respect to time is 
The change in resistance with time is 
According to ohm's law

differentiating with respect to time using chain rule

substituting value at R = 456

