Answer:
hmax = 1/2 · v²/g
Explanation:
Hi there!
Due to the conservation of energy and since there is no dissipative force (like friction) all the kinetic energy (KE) of the ball has to be converted into gravitational potential energy (PE) when the ball comes to stop.
KE = PE
Where KE is the initial kinetic energy and PE is the final potential energy.
The kinetic energy of the ball is calculated as follows:
KE = 1/2 · m · v²
Where:
m = mass of the ball
v = velocity.
The potential energy is calculated as follows:
PE = m · g · h
Where:
m = mass of the ball.
g = acceleration due to gravity (known value: 9.81 m/s²).
h = height.
At the maximum height, the potential energy is equal to the initial kinetic energy because the energy is conserved, i.e, all the kinetic energy was converted into potential energy (there was no energy dissipation as heat because there was no friction). Then:
PE = KE
m · g · hmax = 1/2 · m · v²
Solving for hmax:
hmax = 1/2 · v² / g
From the planks equation
E=hv
V= c/ wave length
V= 3×10^8/30×10^-9
=1×10^16
E= hv
6.63×10^-34×1×10^16
= 6.63×10^-18
Answer:
Both these motions are caused by the Gravitational force of earth.
Explanation:
Both these motions are caused by the Gravitational force of earth.
The speed increases, because as the angle increases (the wing slants up more steeply), the air has to go farther to get over the wing.
Answer:
Total height (s) = 176.4 m
Explanation:
Given:
Initial velocity (u) = 0 m/s
Time taken (t) = 6 sec
Acceleration due to gravity = 9.8 m/s²
Find:
Total height (s)
Computation:
s = ut + [1/2]gt²
s = (0)(6) + [1/2][9.8][6²]
s = 176.4 m
Total height (s) = 176.4 m