C; The Valence electrons spend more time around the atom of F
Answer:
d
Explanation:
Carbohydrates are compounds containing carbon, hydrogen, and oxygen. Therefore, a is true.
An empirical formula is the simplest ratio of atoms present in a compound. Therefore, C2H4O2 and C3H6O3, (if you simplified them like you would a fraction) would be CH2O. Therefore b is correct,
They also have the same % composition, with a ratio of 1 carbon : 2 hydrogen : 1 oxygen. Therefore, c is correct.
Since a, b and c are all correct, the answer is d, all of the above are true.
- E(Bonds broken) = 1371 kJ/mol reaction
- E(Bonds formed) = 1852 kJ/mol reaction
- ΔH = -481 kJ/mol.
- The reaction is exothermic.
<h3>Explanation</h3>
2 H-H + O=O → 2 H-O-H
There are two moles of H-H bonds and one mole of O=O bonds in one mole of reactants. All of them will break in the reaction. That will absorb
- E(Bonds broken) = 2 × 436 + 499 = 1371 kJ/mol reaction.
- ΔH(Breaking bonds) = +1371 kJ/mol
Each mole of the reaction will form two moles of water molecules. Each mole of H₂O molecules have two moles O-H bonds. Two moles of the molecule will have four moles of O-H bonds. Forming all those bond will release
- E(Bonds formed) = 2 × 2 × 463 = 1852 kJ/mol reaction.
- ΔH(Forming bonds) = - 1852 kJ/mol
Heat of the reaction:
is negative. As a result, the reaction is exothermic.
D, the rate increases as concentrations increase.
Typically, reaction rates decrease with time because reactant concentrations decrease as reactions are converted to products. Reaction rates generally increase when reactant concentrations are increased.
The elements of the "Noble" gases group is nonreactive. The reason for this is that noble gases are always or most of the time at room temperature.<span />