Answer:
calcium chloride deihydrate
The chemical reaction would be as follows:
<span>2Na + S → Na2S
We are given the amount of the reactants to be used in the reaction. We use these to calculate the amount of product. We do as follows:
45.3 g Na ( 1 mol / 22.99 g ) = 1.97 mol Na
105 g S ( 1 mol / 32.06 g ) = 3.28 mol S
The limiting reactant would be Na. We calculate as follows:
1.97 mol Na ( 1 mol Na2S / 2 mol Na ) (78.04 g / mol ) = 76.87 g Na2S produced</span>
Explanation:
Equiv means equivalent ...
Answer:
34.9 g/mol is the molar mass for this solute
Explanation:
Formula for boiling point elevation: ΔT = Kb . m . i
ΔT = Temperatures 's difference between pure solvent and solution → 0.899°C
Kb = Ebullioscopic constant → 0.511°C/m
m = molality (moles of solute/1kg of solvent)
i = 2 → The solute is a strong electrolyte that ionizes into 2 ions
For example: AB ⇒ A⁺ + B⁻
Let's replace → 0.899°C = 0.511 °C/m . m . 2
0.899°C / 0.511 m/°C . 2 = m → 0.879 molal
This moles corresponds to 1 kg of solvent. Let's determine the molar mass
Molar mass (g/mol) → 30.76 g / 0.879 mol = 34.9 g/mol
Answer:
Ion-dipole forces
Explanation:
Na⁺ is a cation, that is, an ion with a positive charge.
NH₃ has polar covalent bonds (due to the difference in electronegativity between nitrogen and hydrogen). According to the VESPR theory, it has a trigonal pyramidal shape with a lone pair. As a consequence, it has a net dipole moment and the molecule is polar.
The intermolecular forces between Na⁺ (ion) and NH₃ (dipole) are ion-dipole forces.