<h2>
Answer: Infrared light</h2>
A dark nebula is a cloud of dust and cold gas, which does not emit visible light and hides the stars it contains.
These types of nebulae are composed mainly of the hydrogen they obtain from nearby stars, which is their fuel.
It is using infrared light that we can "observe" and analyze in detail what happens in the inner parts of these nebulae.
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally
The answer is that it is constant. The relation between electric field and electric potential is given as, E= -gradient (V). The E, the partial rate of change of Electric potential, in the equation implies that the V, the partial differential of the potential of the three-dimensional space (assuming it is considered) is constant.
We need to be careful here.
The calculation of the gravitational force between two objects
refers to the distance between their centers.
The minimum possible distance between the Earth's and moon's
centers is the sum of their radii (radiuses).
Earth's radius . . . . . 6,360 km = 6.36 x 10⁶ meters
Moon's radius . . . . . 1,738 km = 1.738 x 10⁶ meters
Sum of their radii = 8.098 x 10⁶ meters
Also:
Earth's mass . . . . . 5.972 x 10²⁴ kg
Moon's mass . . . . . 7.348 x 10²² kg
<span>
and now we're ready to go !
Gravitational force =
G M₁ M₂ / R²
= (6.67 x 10⁻¹¹ N-m²/kg²)(</span><span>5.972 x 10²⁴ kg)(7.348 x 10²² kg)/</span>(8.098 x 10⁶ m)²
= (6.67 · 5.972 · 7.348 / 8.098²) · (10²³) Newtons
= (I get ...) 4.463 x 10²³ Newtons
That's almost exactly 10²³ pounds
= 50,153,000,000,000,000,000 tons.
Those are big numbers.
All I can say is: I wouldn't exactly call that "resting" on the surface".
Answer:
The Sun and planets are shown to the same scale. The small terrestrial planets and tiny Pluto are in the box---the Earth is the blue dot near the center of the box (montage created by Nick Strobel using NASA images).
Size
The Sun is by far the biggest thing in the solar system. From its angular size of about 0.5° and its distance of almost 150 million kilometers, its diameter is determined to be 1,392,000 kilometers. This is equal to 109 Earth diameters and almost 10 times the size of the largest planet, Jupiter. All of the planets orbit the Sun because of its enormous gravity. It has about 333,000 times the Earth's mass and is over 1,000 times as massive as Jupiter. It has so much mass that it is able to produce its own light. This feature is what distinguishes stars from planets.
Composition
What is the Sun made of? Spectroscopy shows that hydrogen makes up about 94% of the solar material, helium makes up about 6% of the Sun, and all the other elements make up just 0.13% (with oxygen, carbon, and nitrogen the three most abundant ``metals''---they make up 0.11%). In astronomy, any atom heavier than helium is called a ``metal'' atom. The Sun also has traces of neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, potassium, and iron. The percentages quoted here are by the relative number of atoms. If you use the percentage by mass, you find that hydrogen makes up 78.5% of the Sun's mass, helium 19.7%, oxygen 0.86%, carbon 0.4%, iron 0.14%, and the other elements are 0.54%.
Explanation: