Answer:
a. inlet velocity = 60.8m/s
b. exit temperature = 686k
Explanation:
The problem involves the conversion of potential energy to kinetic energy as the object falls from rest. Energy is conserved, so the equation used is:
PEi + KEi = PEf + KEf
Since the object is falling from rest, the initial kinetic energy is zero. Also, since the object hits the ground at its final position, the final potential energy is zero. This leaves:
PEi = KEf
mgh = 1/2 mv^2
*cancel out mass on both sides of the equation
gh = 0.5v^2
v = sqrt(2gh) = sqrt(2*9.81*4.5) = 9.40 m/s --> final ans.
One mole of chlorine is equal to 35.453 grams, while one atom is 35.453 AMU
Answer:
The heat energy required, Q = 6193.8 J
Explanation:
Given,
The mass of ice cube, m = 18.6 g
The heat of fusion of ice, ΔHₓ = 333 J/g
The heat energy of a substance is equal to the product of the mass and heat of fusion of that substance. It is given by the equation,
<em> Q = m · ΔHₓ joules</em>
Substituting the given values in the above equation
Q = 18.6 g x 333 J/g
= 6193.8 J
Hence, the heat required to melt the ice cube is, Q = 6193.8 J
That is a vector. It is a combination of direction and velocity. (You can think of Vector from Despicable Me to help you remember the term)
:)