Answer:
It is more important because of the freedom.
Explanation:
While at home you can do your work of course... but you could lay down, take a nap. You could get on the game, play around. You could draw, and fiddle and dance and do WHATEVER you want with no teacher to stop you so you have to be your own motivation. You have to be your own teacher or its VERY easy to fail.
Answer:

Explanation:
25. Boyle's Law
The temperature and amount of gas are constant, so we can use Boyle’s Law.

Data:

Calculations:

26. Ideal Gas Law
We have p, V and n, so we can use the Ideal Gas Law to calculate the volume.
pV = nRT
Data:
p = 101.3 kPa
V = 20 L
n = 5 mol
R = 8.314 kPa·L·K⁻¹mol⁻¹
Calculation:
101.3 × 20 = 5 × 8.314 × T
2026 = 41.57T

Answer:
1 It gives the cell its structure
2 It regulates the materials that enter and leaves the cell
The equation for calculating a mass is as follows:
m=n×M
Molar mass (M) we can determine from Ar that can read in a periodical table, and a number of moles we can calculate from the available date for N:
n(H2SO4)=N/NA
n(H2SO4)= 1.7×10²³ / 6 × 10²³
n(H2SO4)= 0.3 mole
Now we can calculate a mass of H2SO4:
m(H2SO4) = n×M = 0.3 × 98 = 27.8 g
Answer: The coefficient for
is 12.
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.

Thus in the reactants, there are 12 molecules of oxygen in balanced chemical equation. Thus the coefficient for
is 12.