The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
where,
= equilibrium constant at 244°C =
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature =
= final temperature =
Putting values in above equation, we get:
Hence, the rate constant at 324°C is
Answer:
liquid
a semi permeable membrane
oxygen
Explanation:
plz give me brainiest
You should read up on Proust's law, better known as the Law of Definite Proportions. This is a chemical law that defines your question more generally, on why the ratio of elements and ions are always fixed.
Basically, this compound Magnesium(II) Chloride is MgCl2 because it has the same number of protons, neutrons, and electrons all the way. This defines the properties of the compound or atom.
Answer:
You
Explanation:
Will have to fill in the graph organizer with a story