Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH.
Exponentiate both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.
Answer:
Explanation:
we know that specific heat is the amount of heat required to raise the temperature of substance by one degree mathmeticaly
Q=mcΔT
ΔT=T2-T1
ΔT=26.8-10.2=16.6
C for water is 4.184
therefore
Q=1.00*4.184*16.6
Q=69.4 j
now we have to covert joule into calorie
1 calorie =4.2 j
x calorie=69.4 j/2
so 69.4 j =34.7 calorie thats why 34.7 calorie heat is required to raise the temperature of water from 10.2 to 26.8 degree celsius
Answer:
A and 3
B and 2
C and 1
Explanation:
<em>Ion</em>ic bonding is the transfer of electrons from a cat<em>ion</em> to an an<em>ion</em>.
Covalent bonding is the sharing of electrons between nonmetal atoms.
<em>Metallic</em> bonding is the sea of electrons <em>metal </em>cations.
Hope this helped!
Answer:
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Explanation:
1 Ton = 907185 grams
Mass of copper oxide = 1.0 Ton = 907185 grams
Moles of copper oxide =
According to reaction, 2 moles of copper oxide reacts with 1 mole of carbon.
Then 11403.95 moles of copper oxide will react with:
of carbon
Mass of 5,701.98 moles of carbon:
Mass of coke = x
Mass of carbon = 68,423.75 g
Percentage of carbon in coke = 95%
The mass of coke needed to react completely with 1.0 ton of copper(II) oxide is 0.794 Ton.
Answer:
Ar
Explanation:
does not react with anything it has a full electron shell so it does not combine and it is a noble gas