Calm, sunny days with wind moving away from the center.
There's no such thing as a wave of white light. Every light wave with
a certain wavelength has some color. White light is a mixture of all
the different wavelengths with all of the different visible colors.
They're ALL there in white light. When they all enter your eye at
the same time, your brain gets the message of brightness with
no particular color, which we call "white light".
White light is all the colours of light combined. When the droplets act like prisms, they split the white light into all its colours and also slightly bend the different colours. This is how a rainbow is formed.
Answer:

Explanation:
Impulse-Momentum relation:


We solve the equations in order to find the braking force:

Answer:
R = m⁴/kg . s
Explanation:
In this case, the best way to solve this is working with the units in the expression.
The units of velocity (V) are m/s
The units of density (d) are kg/m³
And R is a constant
If the expression is:
V = R * d
Replacing the units and solving for R we have
m/s = kg/m³ * R
m * m³ / s = kg * R
R = m * m³ / kg . s
<h2>
R = m⁴ / kg . s</h2>
This should be the units of R
Hope this helps