1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
5

A particle initially located at the origin has an acceleration of a 2.00j m/s2 and an initial velocity of v-6.00i m/s. (a) Find

the vector position of the particle at any time t (where t is measured in seconds). ti+ t2 j) m (b) Find the velocity of the particle at any time t. I + tj) m/s (c) Find the coordinates of the particle at t 5.00 s. (d) Find the speed of the particle at t 5.00 s. m/s
Physics
1 answer:
s2008m [1.1K]3 years ago
4 0

Answer:

  • \vec{r}(t) = (-6.00 \frac{m}{s} \ t , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )
  • \vec{v}(t) = (-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ t )
  • \vec{r}( 5.00 \ s) = (-30.00 \ m , 25.00 \ m )
  • | \vec{v} (5.00 \ s) | =11.66 \frac{m}{s}

Explanation:

The initial position of the particle, \vec{r}_0, is:

\vec{r}_0 = (0,0)

the initial velocity is:

\vec{v}_0 = - 6.00 \ \frac{m}{s} \hat{i} = (-6.00 \frac{m}{s},0)

and the initial acceleration:

\vec{a} = 2.00  \ \frac{m}{s^2} \ \hat{j} = ( 0, 2.00  \ \frac{m}{s^2})

<h3>a</h3>

The position \vec{r} at time t is

\vec{r}(t) = \vec{r}_0 + \vec{v}_0  \ t   + \frac{1}{2} \ \vec{a} \ t^2

So, for our problem is:

\vec{r}(t) = (0,0) + (-6.00 \frac{m}{s},0)  \ t   + \frac{1}{2} \ ( 0, 2.00  \ \frac{m}{s^2}) \ t^2

\vec{r}(t) = (0 -6.00 \frac{m}{s} \ t , 0 +  \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )

\vec{r}(t) = (-6.00 \frac{m}{s} \ t , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )

<h3>b</h3>

The velocity \vec{v} at time t is

\vec{v}(t) = \vec{v}_0  + \vec{a} \ t

So, for our problem is:

\vec{v}(t) = (-6.00 \frac{m}{s},0)   + ( 0, 2.00  \ \frac{m}{s^2}) \ t

\vec{v}(t) = (-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ t )

<h3>c</h3>

At time 5.00 seconds the position will be:

\vec{r}( 5.00 \ s) = (-6.00 \frac{m}{s} \ 5.00 \ s , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ (5.00 \ s ) ^2 )

\vec{r}( 5.00 \ s) = (-30.00 \ m , 25.00 \ m )

<h3>d</h3>

and the speed will be :

| \vec{v} (5.00 \ s) | = |(-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ 5.00 \ s) |

| \vec{v} (5.00 \ s) | = |(-6.00 \frac{m}{s}, 10.00  \ \frac{m}{s}) |

| \vec{v} (5.00 \ s) | = \sqrt{ (-6.00 \frac{m}{s})^2 + (10.00  \ \frac{m}{s}))^2 }

| \vec{v} (5.00 \ s) | = \sqrt{ 36.00 \frac{m^2}{s^2} + 100.00  \ \frac{m^2}{s^2}}

| \vec{v} (5.00 \ s) | =11.66 \frac{m}{s}

You might be interested in
What is the energy contained in a 0.950 m3 volume near the Earth's surface due to radiant energy from the Sun?
marta [7]
1000000000000 idk sorry
7 0
3 years ago
Fiora starts riding her bike at 20 mi/h. after a while, she slows down to 12 mi/h, and maintains that speed for the rest of the
hammer [34]
<span>d = r*t

t = hours at 20 mi/hr


20t + 12*(4.5 - t) = 70
8t = 16
t = 2 hours

d at 20 mi/hr = 20*2 = 40 miles

40/20 + 30/12 = 4.5 hours

Fiora travels a total distance of 4.5 hours</span>
3 0
3 years ago
Read 2 more answers
What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your an
AveGali [126]

Complete Question

A Ferris wheel on a California pier is 27 m high and rotates once every 32 seconds in the counterclockwise direction. When the wheel starts turning, you are at the very top.

What is your angular position 75 seconds after the wheel starts turning, measured counterclockwise from the top? Express your answer as an angle between 0∘ and 360∘. Express your answer in degrees.

Answer:

\phi=123.75

Explanation:

From the question we are told that:

Height h=27m

Period T=32sec

Time t=75sec

Generally the equation for angular velocity is mathematically given by

\omega=\frac{2 \pi}{T}

\omega=\frac{2 \pi}{32}

\omega=0.196rad/s

Therefore

\theta=\omega t

\theta=0.196rad/s*75sec

\theta=843.75 \textdegree

Therefore

\phi=\theta-2(360)

\phi=123.75

6 0
3 years ago
Sound waves that enter the external acoustic meatus eventually encounter the __________, which then vibrates at the same frequen
7nadin3 [17]

Answer:

tympanic membrane (eardrum)

Explanation:

The sound waves spread through the air and reach the outer ear, into which they penetrate through the ear canal. In doing so, they stimulate the eardrum, which closes the inner end of the duct. By vibrating this membrane, the vibration of a chain of ossicles located in the middle ear is induced. These ossicles transmit their vibration to the oval window, which is a membranous structure that communicates the middle ear with the cochlea of ​​the inner ear. When the oval membrane moves, it moves the liquid (perilymph) that fills one of the three cavities of the cochlea generating waves in it. These waves mechanically stimulate the sensory cells (hair cells) located in the organ of Corti, within the cochlea in the central cavity, the middle ramp. This cavity is filled with a liquid rich in K +, endolymph. The cells embedded in the endolymph, change their permeability to K + due to the movement of the cilia and respond by releasing a neurotransmitter that excites the nerve terminals, which initiate the auditory sensory pathway.

3 0
3 years ago
A 73.0 kg firefighter climbs a flight of stairs 9.0 m high. how much work is required? j
pshichka [43]
The strength of the fireman in vertical direction will be given by F = m * g. Then, the work done will be given by definition by W = F * d. Substituting the expression of the Force in that of the work, we have that the work will be W = m * g * d. Substituting the given values and assuming that g = 10m / s ^ 2, we have a total work of W = (73) * (10) * (9) = 6570 J
7 0
3 years ago
Other questions:
  • If a wave were nine feet high, how much would the amplitude be?
    6·2 answers
  • Can someone help with these questions (1 , 3 , 4)
    7·1 answer
  • Ok, so I've answered this question but I really need someone to just check through it because I have this feeling that I've done
    10·2 answers
  • Which part of the electromagnetic spectrum generally gives us our best views of stars forming in dusty clouds?
    9·1 answer
  • CO2<br> NaCl<br> HCl<br> These may all be classified as
    8·2 answers
  • Part II # 1 A mass on a string of unknown length oscillates as a pendulum with a period of 4 sec. What is the period if: (Parts
    10·1 answer
  • PLEASE HELP!! Salmon often jump waterfalls to reach their
    9·1 answer
  • A hollow spherical shell has mass 8.05kg and radius 0.215m . It is initially at rest and then rotates about a stationary axis th
    13·2 answers
  • The net force of two forces F1 and F2 acting in the same direction is 85N.And if is 15N when they are exerted in opposite direct
    12·2 answers
  • Please help!! will give brainliest if correct!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!