1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
5

A particle initially located at the origin has an acceleration of a 2.00j m/s2 and an initial velocity of v-6.00i m/s. (a) Find

the vector position of the particle at any time t (where t is measured in seconds). ti+ t2 j) m (b) Find the velocity of the particle at any time t. I + tj) m/s (c) Find the coordinates of the particle at t 5.00 s. (d) Find the speed of the particle at t 5.00 s. m/s
Physics
1 answer:
s2008m [1.1K]3 years ago
4 0

Answer:

  • \vec{r}(t) = (-6.00 \frac{m}{s} \ t , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )
  • \vec{v}(t) = (-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ t )
  • \vec{r}( 5.00 \ s) = (-30.00 \ m , 25.00 \ m )
  • | \vec{v} (5.00 \ s) | =11.66 \frac{m}{s}

Explanation:

The initial position of the particle, \vec{r}_0, is:

\vec{r}_0 = (0,0)

the initial velocity is:

\vec{v}_0 = - 6.00 \ \frac{m}{s} \hat{i} = (-6.00 \frac{m}{s},0)

and the initial acceleration:

\vec{a} = 2.00  \ \frac{m}{s^2} \ \hat{j} = ( 0, 2.00  \ \frac{m}{s^2})

<h3>a</h3>

The position \vec{r} at time t is

\vec{r}(t) = \vec{r}_0 + \vec{v}_0  \ t   + \frac{1}{2} \ \vec{a} \ t^2

So, for our problem is:

\vec{r}(t) = (0,0) + (-6.00 \frac{m}{s},0)  \ t   + \frac{1}{2} \ ( 0, 2.00  \ \frac{m}{s^2}) \ t^2

\vec{r}(t) = (0 -6.00 \frac{m}{s} \ t , 0 +  \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )

\vec{r}(t) = (-6.00 \frac{m}{s} \ t , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ t^2 )

<h3>b</h3>

The velocity \vec{v} at time t is

\vec{v}(t) = \vec{v}_0  + \vec{a} \ t

So, for our problem is:

\vec{v}(t) = (-6.00 \frac{m}{s},0)   + ( 0, 2.00  \ \frac{m}{s^2}) \ t

\vec{v}(t) = (-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ t )

<h3>c</h3>

At time 5.00 seconds the position will be:

\vec{r}( 5.00 \ s) = (-6.00 \frac{m}{s} \ 5.00 \ s , \frac{1}{2} \ 2.00  \ \frac{m}{s^2} \ (5.00 \ s ) ^2 )

\vec{r}( 5.00 \ s) = (-30.00 \ m , 25.00 \ m )

<h3>d</h3>

and the speed will be :

| \vec{v} (5.00 \ s) | = |(-6.00 \frac{m}{s}, 2.00  \ \frac{m}{s^2} \ 5.00 \ s) |

| \vec{v} (5.00 \ s) | = |(-6.00 \frac{m}{s}, 10.00  \ \frac{m}{s}) |

| \vec{v} (5.00 \ s) | = \sqrt{ (-6.00 \frac{m}{s})^2 + (10.00  \ \frac{m}{s}))^2 }

| \vec{v} (5.00 \ s) | = \sqrt{ 36.00 \frac{m^2}{s^2} + 100.00  \ \frac{m^2}{s^2}}

| \vec{v} (5.00 \ s) | =11.66 \frac{m}{s}

You might be interested in
A screen is placed 1.20m behind a single slit. The central maximum in the resulting diffraction pattern on the screen is 1.40cm
andrew11 [14]

Answer:

2.8 cm

Explanation:

y_1 = Separation between two first order diffraction minima = 1.4 cm

D = Distance of screen = 1.2 m

m = Order

Fringe width is given by

\beta_1=\dfrac{y_1}{2}\\\Rightarrow \beta_1=\dfrac{1.4}{2}\\\Rightarrow \beta_1=0.7\ cm

Fringe width is also given by

\beta_1=\dfrac{m_1\lambda D}{d}\\\Rightarrow d=\dfrac{m_1\lambda D}{\beta_1}

For second order

\beta_2=\dfrac{m_2\lambda D}{d}\\\Rightarrow \beta_2=\dfrac{m_2\lambda D}{\dfrac{m_1\lambda D}{\beta_1}}\\\Rightarrow \beta_2=\dfrac{m_2}{m_1}\beta_1

Distance between two second order minima is given by

y_2=2\beta_2

\\\Rightarrow y_2=2\dfrac{m_2}{m_1}\beta_1\\\Rightarrow y_2=2\dfrac{2}{1}\times 0.7\\\Rightarrow y_2=2.8\ cm

The distance between the two second order minima is 2.8 cm

8 0
3 years ago
How much current does a 10.0 Ω resistor draw from a 12 V battery?
Amiraneli [1.4K]
The answer would be B.
(V=IR, 12-10i, 12/10=1.2)
7 0
3 years ago
In which general compass traction is this hurricane moving
Ksenya-84 [330]

Answer:

It looks like its moving north.

Explanation:

3 0
3 years ago
Physical quantity are measurable quantities
Vilka [71]

Answer:

yeah physical quantities are the quantities which can be meaured

7 0
3 years ago
A researcher finds that blood alcohol levels cause Progressive damage the liver all of mice and his study were fed the same amou
Juli2301 [7.4K]

Answer:hmm

Explanation:

4 0
3 years ago
Other questions:
  • Which statement correctly describes momentum? It is a scalar quantity because it involves magnitude only. It is a scalar quantit
    11·1 answer
  • HELP!
    15·2 answers
  • An x-ray photon is scattered by an originally stationary electron. how does the frequency of the scattered photon compare relati
    7·1 answer
  • cell membranes contain channels that allow K + ions to leak out consider channel that has diameter of nm and length of nm if cha
    7·1 answer
  • True or false a moving wave source does not affect the frequancy of the wave encountered by the observer
    11·2 answers
  • If you know the power rating of an appliance and the voltage of the line it is attracted to , you can calculate the current the
    15·2 answers
  • A circle is centered at C(0,0). The point M(0,38) is on the circle.
    14·1 answer
  • What the energy transformation of an solar panel?
    13·1 answer
  • At what temperature would volume of gas be doubled of pressure at the same time increase from 700 to 800 mm of Hg? please answer
    11·1 answer
  • You have found that the net force exerted on the cylinder depends on several different independent variables in different ways.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!