I think its C. because metal is a good conductor of heat
I hope this helps ^-^
let me know if im wrong
The emf induced in the coil is -5.65 V
<h3>Induced emf in coil</h3>
The induced emf in the coil is given by ε = -NΔΦ/Δt where
- ΔΦ = change in magnetic flux Φ₂ - Φ₁ where
- Φ₁ = initial magnetic flux = -58 Wb and
- Φ₂ = final magnetic flux = 38 Wb and and
- Δt = change in time = t₂ - t₁ where
- t₁ = initial time = 0 s and
- t₂ = final time = 34 sand
- N = number of loops of coil = 2
Since ε = -NΔΦ/Δt
ε = -N(Φ₂ - Φ₁)/(t₂ - t₁)
Substituting the values of the variables into the equation, we have
ε = -N(Φ₂ - Φ₁)/(t₂ - t₁)
ε = -2(38 Wb - (-58 Wb))/(34 s - 0 s)
ε = -2(38 Wb + 58 Wb)/(34 s - 0 s)
ε = -2(96 Wb)/34 s
ε = -192 Wb/34 s
ε = -5.65 Wb/s
ε = -5.65 V
So, the emf induced in the coil is -5.65 V
Learn more about induced emf in coil here:
brainly.com/question/13051297
Answer:
at y=6.29 cm the charge of the two distribution will be equal.
Explanation:
Given:
linear charge density on the x-axis, 
linear charge density of the other charge distribution, 
Since both the linear charges are parallel and aligned by their centers hence we get the symmetric point along the y-axis where the electric fields will be equal.
Let the neural point be at x meters from the x-axis then the distance of that point from the y-axis will be (0.11-x) meters.
<u>we know, the electric field due to linear charge is given as:</u>

where:
linear charge density
r = radial distance from the center of wire
permittivity of free space
Therefore,





∴at y=6.29 cm the charge of the two distribution will be equal.