Solution:
With reference to Fig. 1
Let 'x' be the distance from the wall
Then for
DAC:

⇒ 
Now for the
BAC:

⇒ 
Now, differentiating w.r.t x:
![\frac{d\theta }{dx} = \frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Ctheta%20%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Btan%5E%7B-1%7D%20%5Cfrac%7Bd%20%2B%20h%7D%7Bx%7D%20-%20%20tan%5E%7B-1%7D%20%5Cfrac%7Bd%7D%7Bx%7D%5D)
For maximum angle,
= 0
Now,
0 = [/tex]\frac{d}{dx}[tan^{-1} \frac{d + h}{x} - tan^{-1} \frac{d}{x}][/tex]
0 = 

After solving the above eqn, we get
x = 
The observer should stand at a distance equal to x = 
Answer:
confounding cause they had exposure to many programmes
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
Id say d because it releases hydrogen and on the other hand a base receives it
<span />
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>