When we cook a marshmallow on a metal poker tool over an open flame, there are three ways in which heat energy is transferred: Conduction, convection, and radiation.
<h3>Heat energy transfer</h3>
Heat transfer is the natural transfer of heat from an object with a higher temperature to an object with a lower temperature. Heat transfer can occur in three ways, namely conduction, convection, and radiation.
- Conduction occurs when heat flows from a place with a high temperature to a place with a lower temperature using a fixed heat-conducting medium. Heat transfer from the open flame to the marshmallows via direct fire contact with the marshmallows is an example of conduction.
- Convection is the transfer of heat by means of a stream in which the intermediate substance also moves. If the particles move and cause heat to propagate, convection will occur. The hot air rising from the flames burning the marshmallows is an example of convection.
- Radiation is heat transfer without a medium. Radiation can also usually be accompanied by light. The direct transfer of heat from the flame to the marshmallow in the form of waves is an example of radiation.
Learn more about heat transfer here: brainly.com/question/16055406
#SPJ4
Explanation:
option D ) is correct the speaker explain a difficult decision he had to make
hi everyone comment
Answer :
Velocity will be 
Explanation:
We have given glass surface has a diameter of 1.5 mm
And charge q = 1.60 nC
Radius of electrons orbit r = height of electron above surface + radius of sphere = 
Force on electron is given by
, here q is charge on sphere and e is charge on electron

This force work as centripetal force
So 

v = 
Answer:
15.5 seconds
Explanation:
Apply Newton's second law:
∑F = ma
-12500 + 9200 = (12000) a
a = -0.275 m/s²
v = at + v₀
0 = (-0.275) t + 4.25
t = 15.5 s
It takes the boat 15.5 seconds to stop.
Answer:
Alternating
Explanation:
It is alternating because it is easy to distribute long distance.
Direct current is found in batteries and have large voltage drop over distance.