1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
3 years ago
11

Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in

order.
Physics
2 answers:
Lana71 [14]3 years ago
5 0

Answer:

Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in order.

Step 2: calculate a & b mag

Step 3: calculate x,y components

Step 4: sum vector components

Step 5: calculate magnitude of R

Step 6: calculate direction of R

Maksim231197 [3]3 years ago
4 0

Answer: The next 5 steps are.

step 2: Find the magnitude of vectors.

step 3: Calculate 'x' and 'y' components.

step 4: Sum the above obtained vector components.

step 5: Calculate the magnitude of Resultant Vector.

Step 6: Determine the direction of the resultant vector.

Explanation:

Let the two vectors be 'A' and 'B'.

Let A = x_{1} \hat{i}+y_{1}\hat{j}+z_{1}\hat{k} and B = x_{2} \hat{i}+y_{2}\hat{j}+z_{2}\hat{k}

It is given that, when solving a two dimensional, multi-charge problem, is to define the vectors.

So, step 1 is to define the vectors A and B.

In step 2, we find the magnitude of the vectors by,

|A|=\sqrt{x_1^2+y_1^2+z_1^2}

|B|=\sqrt{x_2^2+y_2^2+z_2^2}

In step 3, we find the components 'x' and 'y'

Then in step 4, we sum the components. Now we get the Resultant vector (R).

In step 5, Calculate the magnitude of 'R' using the above formula to find magnitude.

In step 6, we determine the direction of 'R'.

You might be interested in
I feel really isolated these days and wish I had more friends. I've chosen to put myself in new social situations to try to make
leva [86]
Behaviorist approach to psychology
3 0
3 years ago
What must happen to an atom of magnesium in order to become a magnesium ion Mg+2?
igomit [66]

Answer:

Answer is: c. It must lose two electrons and become an ion.

Magnesium (Mg) is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons (two valence electrons).

Magnesium has atomic number 12, which means it has 12 protons and 12 electrons. It lost two electrons to form magnesium cation (Mg²⁺) with stable electron configuration like closest noble gas neon (Ne) with 10 electrons.

Electron configuration of magnesium ion: ₁₂Mg²⁺ 1s² 2s² 2p⁶.

Explanation:

4 0
3 years ago
Read 2 more answers
Explain what happens to the particles in a substance during a physical change.
omeli [17]

Answer:

In physical changes no new materials are formed and the particles do not change apart from gaining or losing energy. ... Particles stay the same unless there is a chemical change whether the matter is solid, liquid or gas. Only their arrangement, energy and movement changes.

Explanation:

Hope this helps

7 0
3 years ago
Read 2 more answers
Suppose a car of mass m is moving at a constant speed v of
SIZIF [17.4K]

Answer:

The angle of banked curve that makes the reliance on friction unnecessary is

\arcsin(v^2/(gR))

Explanation:

In order the car to stay on the curve without friction, the net force in the direction of radius should be equal or smaller than the centripetal force. Otherwise the car could slide off the curve.

The only force in the direction of radius is the sine component of the weight of the car

w_r = mg\sin(\theta)

The cosine component is equivalent to the normal force, which we will not be using since friction is unnecessary.

Newton’s Second Law states that

F_{net} = ma = mg\sin(\theta)\\\sin(\theta) = a/g

Also, the car is making a circular motion:

a = \frac{v^2}{R}

Combining the equations:

\sin(\theta) = \frac{a}{g} = \frac{v^2/R}{g} = \frac{v^2}{gR}

Finally the angle is

\arcsin(v^2/(gR))

4 0
3 years ago
PLZ HELP I WILL GIVE BRAINLIEST
Vaselesa [24]

Answer:

12.7m/s

Explanation:

Given parameters:

Mass of diver  = 77kg

Height of jump  = 8.18m

Unknown:

Final velocity  = ?

Solution:

To solve this problem, we apply the motion equation below:

             v²   = u²  + 2gH

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity

H is the height

 Now insert the parameters and solve;

       v² = 0²  +  2 x 9.8 x 8.18

     v  = 12.7m/s

8 0
2 years ago
Other questions:
  • When does DNA replication occur?
    13·2 answers
  • g The “size” of the atom in Rutherford’s model is about 8 × 10−11 m. Determine the attractive electrostatics force between a ele
    8·1 answer
  • Medical cyclotrons need efficient sources of protons to inject into their center. In one kind of ion source, hydrogen atoms (i.e
    11·1 answer
  • At the instant the traffic light turns green, a car starts with a const acceleration of 7.00 ft/sA2. At the same instant a truck
    6·1 answer
  • How many sets of planets would you need to create the mass of the Sun?
    12·1 answer
  • A peregrine falcon dives at a pigeon. The falcon starts downward from rest with free-fall acceleration. If the pigeon is 56.0 m
    9·2 answers
  • A heavy truck and a small truck roll down a hill. Neglecting friction, at the bottom of the hill the heavy truck has greater
    5·1 answer
  • Please help me
    12·1 answer
  • What will happen if there is no oxygen for 2mins???​
    8·1 answer
  • A circular loop of wire 75 mm in radius carries a current of 113 A. Find the (a) magnetic field strength and (b) energy density
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!