1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
valentinak56 [21]
3 years ago
11

Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in

order.
Physics
2 answers:
Lana71 [14]3 years ago
5 0

Answer:

Step 1, when solving a two dimensional, multi-charge problem, is to define the vectors. Please identify the next five steps, in order.

Step 2: calculate a & b mag

Step 3: calculate x,y components

Step 4: sum vector components

Step 5: calculate magnitude of R

Step 6: calculate direction of R

Maksim231197 [3]3 years ago
4 0

Answer: The next 5 steps are.

step 2: Find the magnitude of vectors.

step 3: Calculate 'x' and 'y' components.

step 4: Sum the above obtained vector components.

step 5: Calculate the magnitude of Resultant Vector.

Step 6: Determine the direction of the resultant vector.

Explanation:

Let the two vectors be 'A' and 'B'.

Let A = x_{1} \hat{i}+y_{1}\hat{j}+z_{1}\hat{k} and B = x_{2} \hat{i}+y_{2}\hat{j}+z_{2}\hat{k}

It is given that, when solving a two dimensional, multi-charge problem, is to define the vectors.

So, step 1 is to define the vectors A and B.

In step 2, we find the magnitude of the vectors by,

|A|=\sqrt{x_1^2+y_1^2+z_1^2}

|B|=\sqrt{x_2^2+y_2^2+z_2^2}

In step 3, we find the components 'x' and 'y'

Then in step 4, we sum the components. Now we get the Resultant vector (R).

In step 5, Calculate the magnitude of 'R' using the above formula to find magnitude.

In step 6, we determine the direction of 'R'.

You might be interested in
The constant forces F1 = 8 + 29 + 32 N and F2 = 48 - 59 - 22 N act together on a particle during a displacement from the point A
marshall27 [118]

Answer:

-600 J

Explanation:

F₁ = 8i +29 j + 32k

F₂ = 48 i - 59 j - 22 k

F = F₁ +F₂ = 8i +29 j + 32k +48 i - 59 j - 22 k

F = 56i - 30 j + 10 k

displacement d = ( 0 - 20 )i + ( 0 - 15 )j + ( 7 -0) k

d = - 20 i - 15 j + 7 k  

Work Done = F dot product d

F . d = - 56 x 20 - 30 x - 15 + 10 x 7

=  - 1120 +450 + 70

= -600 J

5 0
3 years ago
A child wants to pump up a bicycle tire so that its pressure is 1.2 × 105 pa above that of atmospheric pressure. if the child us
WINSTONCH [101]
General expression is;
Pressure = Force/Area
In which,
Pressure = Required pressure + Atmospheric pressure = (1.2*10^5) + (101325) = 221325 Pa = 221325 N/m^2

Area = πD^2/4 = π*0.035^2/4 = 9.621*10^-4 m^2

Therefore,
Force, F = Pressure*Area = 221325*9.621*10^-4 = 212.94 N
7 0
3 years ago
Read 2 more answers
A baseball is thrown directly upward from ground level with a velocity of +15 m/s. What are the two times when the ball is 10 m
erastovalidia [21]

Answer:

time is 0.5660 s

and time is - 3.62431  s

Explanation:

velocity u = 15 m/s

height s = 10 m

acceleration due to gravity g =  –9.8 m/s²

to find out

time

solution

we will apply here distance equation that is

s = ut - 1/2× gt²   ...........1

here put all these value and get time t

here s is height and g is -9.8

so

s = ut - 1/2× gt²

10 = 15t - 1/2× (-9.8)t²

10 = 15t + 4.9t²

solve it we get t

t = 0.56630 and -3.62431

so time is 0.5660 s

and time is - 3.62431  s

8 0
4 years ago
Two people, one with mass m1 and the other with mass m2, stand on a stationary sled with mass M on a frozen lake. Assume that th
lozanna [386]

Answer:

Part a)

Velocity of sled

v = \frac{m_1 s}{m_1 + m_2 + M}

velocity of first man who jump off

v_1 = -\frac{(m_2 + M) s}{m_1 + m_2 + M}

Part b)

Velocity of sled

v_f = (\frac{m_1 s}{m_1 + m_2 + M}) + (\frac{m_2}{m_2 + M})s

Also the speed of second person is given as

v_2 = (\frac{m_1 s}{m_1 + m_2 + M}) - \frac{Ms}{m_2 + M}

Part c)

change in kinetic energy of sled + two people is given as

KE = \frac{1}{2}Mv_f^2 + \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2

Explanation:

As we know that here we we consider both people + sled as a system then there is no external force on it

So here we can use momentum conservation

since both people + sled is at rest initially so initial total momentum is zero

now when first people will jump with relative velocity "s" then let say the sled + other people will move off with speed v

so by momentum conservation we have

0 = m_1(v - s) + (m_2 + M)v

v = \frac{m_1 s}{m_1 + m_2 + M}

so velocity of the sled + other person is

v = \frac{m_1 s}{m_1 + m_2 + M}

velocity of first man who jump off

v_1 = \frac{m_1 s}{m_1 + m_2 + M} - s

v_1 = -\frac{(m_2 + M) s}{m_1 + m_2 + M}

Part b)

now when other man also jump off with same relative velocity

so let say the sled is now moving with speed vf

so by momentum conservation we have

(m_2 + M)(\frac{m_1 s}{m_1 + m_2 + M}) = m_2(v_f - s) + Mv_f

(m_2 + M)(\frac{m_1 s}{m_1 + m_2 + M}) + m_2s = (m_2 + M)v_f

Now we have

v_f = (\frac{m_1 s}{m_1 + m_2 + M}) + (\frac{m_2}{m_2 + M})s

Also the speed of second person is given as

v_2 = (\frac{m_1 s}{m_1 + m_2 + M}) + (\frac{m_2}{m_2 + M})s - s

v_2 = (\frac{m_1 s}{m_1 + m_2 + M}) - \frac{Ms}{m_2 + M}

Part c)

change in kinetic energy of sled + two people is given as

KE = \frac{1}{2}Mv_f^2 + \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2

here we know all values of speed as we found it in part a) and part b)

4 0
3 years ago
Assessing how well one variable predicts another variable is to blank as detecting cause-effect relationships between different
Reptile [31]
Are you asking about independent and dependent variables?
7 0
3 years ago
Read 2 more answers
Other questions:
  • A duck flying horizontally due north at 12.3 m/s passes over East Lansing, where the vertical component of the Earth's magnetic
    11·1 answer
  • What makes the steps of foot over bridge at railway station to wear out slowly?
    10·2 answers
  • What is the equivalent resistance if you connect three 10.0 Ω resistors in series?
    8·2 answers
  • A convex lens focuses light to a single focal point. What wave behavior is responsible for the light rays coming together at the
    15·1 answer
  • Is gravity air resistance?
    15·1 answer
  • At a height of ten meters above the surface of a freshwater lake, a sound pulse is generated. The echo from the bottom of the la
    12·1 answer
  • A body is under going non uniform circular motion work done by tangential force on body is​
    14·1 answer
  • Question 7 of 10 A permanent magnet picks up an iron nail, magnetizing the nail. How is this system different from an electromag
    8·1 answer
  • A force F acts at one corner of a thin, square metal plate. The force acts in the same plane as the plate. Which dashed line rep
    14·1 answer
  • Radiation present in the environment but not produced by humans is called ______.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!