Answer:
Pascal is a derived unit because <u>it</u><u> </u><u>cannot</u><u> </u><u>be</u><u> </u><u>expressed</u><u> </u><u>in</u><u> </u><u>any</u><u> </u><u>physics</u><u> </u><u>terms</u><u>,</u><u> </u><u>but</u><u> </u><u>it</u><u> </u><u>is</u><u> </u><u>an</u><u> </u><u>expression</u><u> </u><u>of</u><u> </u><u>fundamental</u><u> </u><u>quantities</u><u>.</u>
Explanation:

The common value for “Speed of light in vacuum” is
metre per second.
Answer: Option b
<u>Solution:
</u>
Speed of light can be defined as the speed with which light waves propagate in different medium. In vacuum, speed of light is 186,282 miles per second or 299,792 km/s which is rounded off as
.
“Speed of light in vacuum” is a universal constant and usually represented by ‘c’. Light waves travels at a speed of
metre per second in vacuum.
Given:
B =
T
V=
q = 2.5 ×
C
α = 90
To find:
Force = ?
Formula used:
Force on the moving charge is given by,
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
Solution:
F = q V B sin α
Where F = force exerted on moving charge
V = velocity of charge
q = charge
α = angle between direction of V and B
F = 
F = 37.5 × 
F = 3.75 Newton
Thus, the force acting on the moving charge is 3.75 Newton.
A synthesis reaction occurs when a molecule is formed from the bonding of atoms, ions or simpler molecules. A single product is created from multiple reactants. These reactions are exothermic since they release energy in the form of light and heat.
the answer to your question is 10.5 kJ