Answer:
=118.8 K= 154.2°C
Explanation:
COP_max of carnot heat pump= 
where T_H and T_C are temperatures of hot and cold reservoirs
Also COP=
in the question 
⇒
heat is added directly to be as efficient as via heat pump

and T_H= 24° C= 297 K

on calculating the above equation we get
=118.8 K
the outdoor temperature for efficient addition of heat to interior of home
=118.8 K= 154.2°C
Answer:
(a) 45 micro coulomb
(b) 6 micro Coulomb
Explanation:
C = 3 micro Farad = 3 x 10^-6 Farad
V = 15 V
(a) q = C x V
where, q be the charge.
q = 3 x 10^-6 x 15 = 45 x 10^-6 C = 45 micro coulomb
(b)
V = 2 V, C = 3 micro Farad = 3 x 10^-6 Farad
q = C x V
where, q be the charge.
q = 3 x 10^-6 x 2 = 6 x 10^-6 C = 6 micro coulomb
Answer:
Option C
100 J
Explanation:
Kinetic energy, KE is given by
where m is the mass and v is the velocity
Substituting 50 Kg for mass, m and 2 m/s for velocity v then we obtain

Therefore, the child's kinetic energy is equivalent to 100 J
Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.