The work done on the car is -20 J.
Work done on the car is negative, meaning that the car actually does work on the external system.
<h3>Energy and law of conservation of energy</h3>
- Energy is the ability to do work
- the law of conservation of energy states that the total energy in a system is conserved
From the law of conservation of energy, the initial energy of the car before it moves down the road remains constant or unchanged.
- Initial energy = 100 J
- Initial energy = Final energy - work done on car
- Final Energy = Work done on car + initial energy
80J = Work done on car + 100 J
Work done on car = 80 - 100J
Work done on car = -20 J
Hence, the work done on the car is -20 J
Work done on car is negative.
Since work done on the car is negative, it means that the car actually does work on the external system. Hence, the decrease in the energy of the car.
Learn more about energy and work at: brainly.com/question/13387946
The average velocity is -4.17 m/s
Explanation:
The average velocity of a body is given by:

where
d is the displacement of the body
t is the time elapsed
For the student in this problem, we have:
Initial position: 
Final position: 
So the displacement is

The time elapsed is
t = 60 s
Therefore, the average velocity is

Where the negative sign means the student is moving towards the origin.
Learn more about average speed and velocity:
brainly.com/question/8893949
brainly.com/question/5063905
#LearnwithBrainly
Answer:
According,to the law of conservation of energy,the amount of energy in a closed system always stay constant. ... So,the amount of work output and other transformed energy is equal to the amount of energy inputs. • In this way,the conservation of energy is fulfilled by the machines.
Ah ha ! Very interesting question.
Thought-provoking, even.
You have something that weighs 1 Newton, and you want to know
the situation in which the object would have the greatest mass.
Weight = (mass) x (local gravity)
Mass = (weight) / (local gravity)
Mass = (1 Newton) / (local gravity)
"Local gravity" is the denominator of the fraction, so the fraction
has its greatest value when 'local gravity' is smallest. This is the
clue that gives it away.
If somebody offers you 1 chunk of gold that weighs 1 Newton,
you say to him:
"Fine ! Great ! Golly gee, that's sure generous of you.
But before you start weighing the chunk to give me, I want you
to take your gold and your scale to Pluto, and weigh my chunk
there. And if you don't mind, be quick about it."
The local acceleration of gravity on Pluto is 0.62 m/s² ,
but on Earth, it's 9.81 m/s.
So if he weighs 1 Newton of gold for you on Pluto, its mass will be
1.613 kilograms, and it'll weigh 15.82 Newtons here on Earth.
That's almost 3.6 pounds of gold, worth over $57,000 !
It would be even better if you could convince him to weigh it on
Halley's Comet, or on any asteroid. Wherever he's willing to go
that has the smallest gravity. That's the place where the largest
mass weighs 1 Newton.
Answer:
option B
Explanation:
given,
diameter of the rotating space = 2 Km
Force exerted at the edge of the space = 1 g
force experienced at the half way = ?
As the object is rotating in the circular part
Force is equal to centripetal acceleration.
at the edge
g = ω² r
ω is the angular velocity of the particle
r is the radius.
now, acceleration at the half way
g' = ω² r'



People at the halfway experience g/2
hence, the correct answer is option B