Answer:
7.89 7.91
Explanation:
The ranges of measurement lie between 7.92-0.05 and 7.92+0.05
7.87g and 7.97g
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
Answer:
Work = F * s where s is the distance F moves
Since F is stationary, in this case, "no work" is done by either person
Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s