Answer:
Physical Properties of Sodium
Atomic number 11
Melting point 97.82°C (208.1°F)
Boiling point 881.4°C (1618°F)
Volume increase on melting 2.70%
Latent heat of fusion 27.0 cal/g
Lenntech Water treatment & purification
Toggle navigation
Home Periodic table Elements Sodium
Sodium - Na
Chemical properties of sodium - Health effects of sodium - Environmental effects of sodium
Atomic number
11
Atomic mass
22.98977 g.mol -1
Electronegativity according to Pauling
0.9
Density
0.97 g.cm -3 at 20 °C
Melting point
97.5 °C
Boiling point
883 °C
Vanderwaals radius
0.196 nm
Ionic radius
0.095 (+1) nm
Isotopes
3
Electronic shell
[Ne] 3s1
Energy of first ionisation
495.7 kJ.mol -1
Answer:
Explanation:
The father of the Multitude was Abraham. And he did precede the 10 commandments. But the story really has nothing to do with the 10 commandments.
He obeyed God's Command because it was God who issued it. Abraham had complete faith in God's ability to make things come out right. The sacrifice of Isaac was a test of faith.
I would advise you to answer true, but whoever wrote the question employed a twisted kind of logic. The sacrifice of Isaac had nothing to do with the 10 commandments. <u><em>Thou Shalt not murde</em></u>r is not really covered by this circumstance.
So true might not be the correct answer. The question is very complex and does not lend itself to a simple True/ False answer.
Answer:
Any incident ray traveling parallel to the principal axis of a converging lens will refract through the lens and travel through the focal point on the opposite side of the lens. ... These rays of light will refract when they enter the lens and refract when they leave the lens.
Hope this helps...
<span>The systems of the body involved in preparing and eating a sandwich are :
</span>The skeletal, muscular, and digestive system. They are all directly involved in eating and preparing a sandwich.
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.