Suvat
we have s, u, v and we want a
the suvat equation with these values in is: v^2 = u^2 - 2as
so a = (-v^2 + u^2)/-2s
plug numbers in
a = (-85^2 + 0^2)/-2*36 = 7225/72 = 100.3... ms^-2
Answer:
a) v = 0.9167 m / s, b) A = 0.350 m, c) v = 0.9167 m / s, d) A = 0.250 m
Explanation:
a) to find the velocity of the wave let us use the relation
v = λ f
the wavelength is the length that is needed for a complete wave, in this case x = 5.50 m corresponds to a wavelength
λ = x
λ = x
the period is the time for the wave to repeat itself, in this case t = 3.00 s corresponds to half a period
T / 2 = t
T = 2t
period and frequency are related
f = 1 / T
f = 1 / 2t
we substitute
v = x / 2t
v = 5.50 / 2 3
v = 0.9167 m / s
b) the amplitude is the distance from a maximum to zero
2A = y
A = y / 2
A = 0.700 / 2
A = 0.350 m
c) The horizontal speed of the traveling wave (waves) is independent of the vertical oscillation of the particles, therefore the speed is the same
v = 0.9167 m / s
d) the amplitude is
A = 0.500 / 2
A = 0.250 m
Answer: Heat will transfer from the water to the air. When a mass of air moves on a warmer surface it is heated by its base. Then thermal instability develops in the lower layers and then extends upwards. If the air initially contained inversions, these are destroyed and a strong gradient is established uniformly in the lower troposphere temperature.
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
As this happens over twelve seconds, you would take the total difference in velocities and divide it by twelve to find the change per second
44.0 m/s - 2.0 m/s = 42.0 m/s
42.0 m/s / 12 s = 3.5 m/s2
the acceleration of the rock would be 3.5 m/s2