1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
2 years ago
15

A 70-kg astronaut is space walking outside the space capsuleand is stationary when the tether line breaks. As a means of returni

ng to the capsule he throws his 2.0 kg space hammer at a speed of 14 m/s away from the capsule. At what speed does the astronaut move toward the capsule?
Physics
2 answers:
Bogdan [553]2 years ago
7 0

Answer:

0.4 m/s

Explanation:

Law of conservation of momentum tell us that the change in momentum of the hammer will be equal to the change in momentum of the astronaut

change in momentum of hammer = change in momentum of astronaut

2 kg (14 m/s - 0 m/s) = 70 kg * (v-0)

                                v  = 0.4 m/s

vladimir1956 [14]2 years ago
6 0

Answer:

The speed of the astronaut toward the capsule is v_{a}=0.4\frac{m}{s}

Explanation:

We have a system of two "particles" which are the astronaut and the hammer.

Initially, they are together and their relative velocities are zero, therefore <em>the initial linear momentum is zero</em>.

As <u>there are no external forces to this system</u>, the momentum is constant. This means that <em>the initial momentum is equal to the final momentum</em>:

0=p_{i}=p_{f}=m_{h}v_{h}-m_{a}v_{a}

<em>where the mass and velocity with h subscript corresponds to the hammer, and the ones with a subscript corresponds to the astronaut</em>.

Then, we clear the velocity of the astronaut, and calculate

m_{h}v_{h}-m_{a}v_{a}\Leftrightarrow v_{a}=\frac{m_{h}}{m_{a}}v_{h}\Leftrightarrow v_{a}=\frac{2kg}{70kg}*14\frac{m}{s}=0.4\frac{m}{s}

which is the speed of the astronaut toward the capsule.

You might be interested in
For your answer to this problem, just type in the numerical magnitude of the momentum - no units.
stepan [7]

Answer:

120 kg•m/s.

Explanation:

From the question given above, the following data were obtained:

Case 1

Mass of object = M

Velocity of object = V

Momentum = 15 kg•m/s

Case 2

Mass of object = 2M

Velocity of object = 4V

Momentum = ?

Momentum is defined as follow:

Momentum = mass × velocity

The momentum of object in case 2 can be obtained as follow:

From case 1

Momentum = mass × velocity

15 = M × V

15 = MV ....... (1)

From case 2:

Momentum = mass × velocity

Momentum = 2M × 4V

Momentum = 8MV ....... (2)

Finally , substitute the value of MV in equation 1 into equation 2.

Momentum = 8MV

MV = 15

Momentum = 8 × 15

Momentum = 120 kg•m/s

Therefore, an object with a mass of 2M and 4V would have a momentum of 120 kg•m/s

3 0
3 years ago
What is the 3 word definition for momentum?
Nesterboy [21]

Answer:

mass multiplied by velocity (4 words but uh

3 0
2 years ago
Read 2 more answers
PART ONE
stira [4]

Answer:

3.64×10⁸ m

3.34×10⁻³ m/s²

Explanation:

Let's define some variables:

M₁ = mass of the Earth

r₁ = r = distance from the Earth's center

M₂ = mass of the moon

r₂ = d − r = distance from the moon's center

d = distance between the Earth and the moon

When the gravitational fields become equal:

GM₁m / r₁² = GM₂m / r₂²

M₁ / r₁² = M₂ / r₂²

M₁ / r² = M₂ / (d − r)²

M₁ / r² = M₂ / (d² − 2dr + r²)

M₁ (d² − 2dr + r²) = M₂ r²

M₁d² − 2dM₁ r + M₁ r² = M₂ r²

M₁d² − 2dM₁ r + (M₁ − M₂) r² = 0

d² − 2d r + (1 − M₂/M₁) r² = 0

Solving with quadratic formula:

r = [ 2d ± √(4d² − 4 (1 − M₂/M₁) d²) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − (1 − M₂/M₁)) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(1 − 1 + M₂/M₁) ] / 2 (1 − M₂/M₁)

r = [ 2d ± 2d√(M₂/M₁) ] / 2 (1 − M₂/M₁)

When we plug in the values, we get:

r = 3.64×10⁸ m

If the moon wasn't there, the acceleration due to Earth's gravity would be:

g = GM / r²

g = (6.672×10⁻¹¹ N m²/kg²) (5.98×10²⁴ kg) / (3.64×10⁸ m)²

g = 3.34×10⁻³ m/s²

4 0
2 years ago
Garrick rubs an inflated balloon against his hair. He then touches the balloon against a non-conducting wall.
Sauron [17]

Answer:

Figure A

Explanation:

At first, the inflated balloon is rubbed against the hair.

In this situation, the balloon is charged by friction: because of the friction between the surface of the balllon and the hair, electrons are transferred from the hair to the surface of the balloon.

As a result, when the balloon is detached from the hair, it will have an excess of negative charge (due to the acquired electrons).

Then, the balloon is placed in contact with the non-conducting wall.

The non-conducting wall is initially neutral (equal number of positive and negative charges).

Because the wall is made of a non-conducting material (=isolant), the charges cannot move easily through it. Therefore, even though the charges on the wall feel a force due to the presence of the electrons in the balloon, they will not redistribute along the wall.

Therefore, the charges on the wall will remain equally distributed, as shown in figure A.

7 0
3 years ago
Were the continents once joined together as a supercontinent? Give 3 pieces of evidence to support Alfred Wegeners Theory of Con
sattari [20]
Yes! Fossils, The outlines of the continents and geological features .
5 0
3 years ago
Read 2 more answers
Other questions:
  • Explain why fitness should be a lifetime “road trip”, instead of a one-time destination?
    12·1 answer
  • (Double points) A worker applied 27 newtons to a lever with a length of 4 meters that rotated around a hinge. What was the torqu
    15·2 answers
  • When a beam of light is incident on a surface, it delivers energy to the surface. The intensity of the beam is defined as the en
    8·1 answer
  • The atoms of a molecule come from two or more?
    7·2 answers
  • The flow rate over Niagara falls is 84,760 cfs (cubic feet per second), and the drop from top to bottom is 167 feet. If this flo
    7·1 answer
  • A nuetral atom has no overall charge. Explain this in terms of its particles.
    10·1 answer
  • A 6,000-km undersea glass fiber phone line crosses the Atlantic ocean connecting the US and France. (a) How long does it take fo
    12·1 answer
  • Which of the following is not a main function of the human's body nervous system?
    8·1 answer
  • 5. In which image below is the most work being wasted as heat?
    8·1 answer
  • •Accordingto the graph, how many dark-colored moths existed in year 8?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!