I remember c/d. That's not a problem. But if you want 'c', you'll have to give me 'd'.
Answer:
See the answers below.
Explanation:
In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.
So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

Therefore we will have the following equation:
![(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]](https://tex.z-dn.net/?f=%286.5%2A9.81%2A120%29%2B%280.5%2A6.5%2A18%5E%7B2%7D%20%29%3D%286.5%2A9.81%2A60%29%2B%280.5%2A6.5%2Av_%7BB%7D%5E%7B2%7D%20%29%5C%5C3.25%2Av_%7BB%7D%5E%7B2%7D%20%3D4878.9%5C%5Cv_%7BB%7D%3D%5Csqrt%7B1501.2%7D%5C%5Cv_%7BB%7D%3D38.75%5Bm%2Fs%5D)
The kinetic energy can be easily calculated by means of the kinetic energy equation.
![KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]](https://tex.z-dn.net/?f=KE_%7BB%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av_%7BB%7D%5E%7B2%7D%5C%5CKE_%7BB%7D%3D0.5%2A6.5%2A%2838.75%29%5E%7B2%7D%5C%5CKE_%7BB%7D%3D4878.9%5BJ%5D)
In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.
![E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]](https://tex.z-dn.net/?f=E_%7BA%7D%3DE_%7BC%7D%5C%5C6.5%2A9.81%2A120%2B%280.5%2A9.81%2A18%5E%7B2%7D%20%29%3D0.5%2A6.5%2Av_%7BC%7D%5E%7B2%7D%20%5C%5Cv_%7Bc%7D%5E%7B2%7D%20%3D%5Csqrt%7B2843.39%7D%5C%5Cv_%7Bc%7D%3D53.32%5Bm%2Fs%5D)
Explanation:
Calculate position vectors in a multidimensional displacement problem. Solve for the displacement in two or three dimensions. Calculate the velocity vector
Answer:
3.536*10^-6 C
Explanation:
The magnitude of the charge is expresses as Q = CV
C is the capacitance of the capacitor
V is the voltage across the capacitor
Get the capacitance
C = ε0A/d
ε0 is the permittivity of the dielectric = 8.84 x 10-12 F/m
A is the area = 0.2m²
d is the plate separation = 0.1mm = 0.0001m
Substitute
C = 8.84 x 10-12 * 0.2/0.0001
C = 1.768 x 10-8 F
Get the potential difference V
Using the formula for Electric field intensity
E = V/d
2.0 × 10^6 = V/0.0001
V = 2.0 × 10^6 * 0.0001
V = 2.0 × 10^2V
Get the charge on each plate.
Q = CV
Q = 1.768 x 10-8 * 2.0 × 10^2
Q = 3.536*10^-6 C
Hence the magnitude of the charge on each plate should be 3.536*10^-6 C