The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Should be 1.4, I hope this helps you out
Answer:
It's impossible for an ideal heat engine to have non-zero power.
Explanation:
Option A is incomplete and so it's possible.
Option B is possible
Option D is related to the first lae and has nothing to do with the second law.
Hence, the correct option is C.
The ideal engine follows a reversible cycle albeit an infinitely slow one. If the work is being done at this infinitely slow rate, the power of such an engine is zero.
We can also stat the second law of thermodynamics in this manner;
It is impossible to construct a cyclical heat engine whose sole effect is the continuous transfer of heat energy from a colder object to a hotter one.
This statement is known as second form or Clausius statement of the second law.
Thus, it is possible to construct a machine in which a heat flow from a colder to a hotter object is accompanied by another process, such as work input.
Answer:
if the stars connect to a thing, then it describes.
Answer:
The output power is 2 kW
Explanation:
It is given that,
Number of turns in primary coil, 
Number of turns in secondary coil, 
Voltage of primary coil, 
Current drawn from secondary coil, 
We need to find the power output. It is equal to the product of voltage and current. Firstly, we will find the voltage of secondary coil as :



So, the power output is :



or

So, the output power is 2 kW. Hence, this is the required solution.