The highest energy occupied molecular orbital in the C-C bond of the C₂ molecule is 2pπ orbitals.
<h3>What is Molecular Orbital Theory?</h3>
According to this theory,
- Molecular orbitals are formed by intermixing of atomic orbitals of two or more atoms having comparable energies
- The number of molecular orbitals formed is equal to the number of atomic orbitals combined.
- The shape of molecular orbitals formed depends on the type of atomic orbitals combined
- Only atomic orbitals having comparable energies and the same orientation can intermix
- Bonding M.O. is formed by the additive effect of atomic orbitals and thus, has lower energy and high stability.
- Antibonding M.O. is formed by the subtractive effect of atomic orbitals and thus, has higher energy and low stability.
- Bonding M.O. is represented by
while Antibonding M.O. is represented by 
Molecular Orbital Diagram of C₂
Learn more about Molecular Orbital Theory:
brainly.com/question/17371976
#SPJ4
The empirical formula of the compound is calculated as follows
first calculate the mass of oxygen= 12-(4.09 +3.71)= 5.02g
then calculate the moles of each element, moles = mass/ molar mass
moles of K = 4.09g/39 g/mol(molar mass of K) = 0.105 moles
moles of Cl = 3.71g/35.5 g/mol(molar mass of Cl) = 0.105 moles
moles of O = 5.02g/ 16g/mol(molar mass of O) = 0.314 moles
then calculate e mole ratio by dividing each mole by the smallest number of moles ( 0.105 moles)
K=0.105/0.105= 1
Cl=0.105 /0.105=1
O= 0.314/0.105=3
therefore the empirical formula = KClO3
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g
First write all of the compounds/atoms in either side then fill in existing values and balance
Na- 1
Br- 1
Ca- 1
Cl- 2
Na- 1
Cl- 1
Ca-1
Br-2
Balance to get
2NaBr+CaCl2=2NaCl+CaBr2
Answer:
B. mass and height have the same effect on gravitational potential energy.
Explanation:
Both mass and height have the same effect on the gravitational potential energy of body.
Gravitational potential energy is the energy of a body due to that of another body. It usually the energy at rest in a body.
It is mathematically expressed as;
G.P.E = m x g x h
m is the mass
g is the acceleration due to gravity
h is the height
We see that both the height and mass are directly proportional to the gravitational potential energy and as such, they have the same effect.