<u>Answer:</u> For the given equation, only iron has the value of
equal to 0 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(Fe(s))})+(3\times \Delta H^o_f_{(CO_2(g))})]-[(3\times \Delta H^o_f_{(CO(g))})+(2\times \Delta H^o_f_{(Fe_2O_3(s))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe%28s%29%29%7D%29%2B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%5D-%5B%283%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO%28g%29%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28Fe_2O_3%28s%29%29%7D%29%5D)
The enthalpy of formation for the substances present in their elemental state is taken as 0.
Here, iron is present in its elemental state which is solid.
Hence, for the given equation, only iron has the value of
equal to 0 kJ.
I will use this conversion:
1m = 1000 mm => 1 = 1m / 1000mm
1 m = 100 cm=> 1 = 1m / 100cm
1m = 10 dm=> 1 = 1m / 10 dm
So,
B) 3.8 * 10^7 cm^3 = 3.8 * 10^7 cm^3 * [1m / 100cm]^3 = 38 m^3
C) 3.8 * 10^5 dm^3 * [1m / 10 dm]^3 = 380 m^3
D) 3.8 * 10^8 mm^3 * [1m / 1000 mm]^3 = 0.38 m^3
Now you can compare the four volumes and conclude which is the largest.
Answer: option C) 3.8 * 10^5 dm^3
Based on the energy usage shown by the graph, the best option for the chemical change represented is the combustion of iron.
<h3>What chemical change is shown by the graph?</h3>
The combustion of iron in oxygen leads to the formation of Iron (III) oxide in solid form.
For the combustion of iron to happen, a lot of heat has to be applied to the iron which is why the potential energy of reactants is high. As the reaction progresses, the energy needed reduces as iron (III) oxide is formed.
Find out more on Iron (III) oxide at brainly.com/question/11885810.
<span>Define symbiosis, commensalism, mutualism, and parasitism. 2. Give two examples of pairs of organisms that have thesesymbiotic relationships: commensalism, mutualism, and parasitism </span>