Answer:
The angle
measures approximately 
Step-by-step explanation:
Since this problem involves the finding of an angle in a right angle triangle for which we know the opposite side and the adjacent side, the trigonometric function that relates them is the tangent:

Then, for our case we get a starting equation that reads:

and for which we need to solve for
. Then we use the arctangent function to get the final answer:

Answer:
22.9 yards
Step-by-step explanation:
Since b² = a² - c² where a = vertex of major axis, 2a = 50 yards the length of the major axis. So , a = 50/2 = 25 yards. c = focus of chamber = 10 yards from center and b = vertex of minor axis.
So, b = ±√(a² - c²)
= ±√(25² - 10²)
= ±√(625 - 100)
= ±√525
= ±22.91 yards
≅ ± 22.9 yards
Since b = length of minor axis from center of chamber = 22.91 yards. So, he should build the whisper chamber 22.9 yards out from the center of the chamber.
Answer:
x=
7/3
x=-4
Step-by-step explanation:
Use the quadratic formula
a= 3, b=5, c=-28
-5± 
x= _________________
2.3
Simplfy

Answer:
1. Consistent equations
x + y = 3
x + 2·y = 5
2. Dependent equations
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
x + 2 = 4 and x + 2 = 6
5. Independent equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
4 = 2
7. One solution
3·x + 5 = 11
x = 2
Step-by-step explanation:
1. Consistent equations
A consistent equation is one that has a solution, that is there exist a complete set of solution of the unknown values that resolves all the equations in the system.
x + y = 3
x + 2·y = 5
2. Dependent equations
A dependent system of equations consist of the equation of a line presented in two alternate forms, leading to the existence of an infinite number of solutions.
3·x + 2·y = 6
6·x + 4·y = 12
3. Equivalent equations
These are equations with the same roots or solution
e.g. 9·x - 12·y = 6
3·x - 4·y = 2
4. Inconsistent equations
Inconsistent equations are equations that are not solvable based on the provided set of values in the equations
e.g. x + 2 = 4 and x + 2 = 6
5. Independent equations
An independent equation is an equation within a system of equation, that is not derivable based on the other equations
y = -8·x + 4
8·x + 4·y = 0
6. No solution
No solution indicates that the solution is not in existence
Example, 4 = 2
7. One solution
This is an equation that has exactly one solution
Example 3·x + 5 = 11
x = 2
Answer:
D
Step-by-step explanation: