Answer:

Explanation:
We have the following information,

We apply the equation for capacitor charging the voltage across it,

Replacing values,


The approximate orbital period of this star is 13 years.
<h3>What is Kepler's third law?</h3>
The square of a planet's period of revolution around the sun in an elliptical orbit is directly proportional to the cube of its semi-major axis, states Kepler's law of periods.
T² ∝ a³
The time it takes for one rotation to complete depends on how closely the planet orbits the sun. With the use of the equations for Newton's theories of motion and gravitation, Kepler's third law assumes a more comprehensive shape:
P² = 4π² /[G(M₁+ M₂)] × a³
where M₁ and M₂ are the two circling objects' respective masses in solar masses.
Learn more about Kepler's third law here:
brainly.com/question/1608361
#SPJ1
Examples of strong acids are hydrochloric acid (HCl), perchloric acid (HClO4), nitric acid (HNO3) and sulfuric acid (H2SO4). ... For example, hydrogen chloride is a strong acid in aqueous solution, but is a weak acid when dissolved in glacial acetic acid.
Using organs cloned from the cells of the patient <span>would prevent the rejection of tissue after an organ transplant.</span>
Answer:
Explanation:
Remark
The only thing that might trip you up is what to do with the angle. The vertical component of the 15 degrees does no work against anything. So the 15 degrees limits the horizontal force.
The formula is
Work = F * d * cos(15)
The givens are
F = 2000 N
d = 30 m
Cos(15) = 0.9659
Solution
Work = 2000 * 30 * cos(15)
Work = 57,955
Rounded to two places would be 5.8 * 10^4
C