That's up to you because you have to go through the book to see their expressions
<h2>
<u>KINETIC ENERGY</u></h2>
<h3>Problem:</h3>
» A 2kg mass is moving at 3m/s. What is its kinetic energy?
<h3>Answer:</h3>
— — — — — — — — — —
<h3>Formula:</h3>
To calculate the velocity of a kinetic energy, we can use formula
where,
- v is the velocity in m/s
- KE is the kinetic energy in J (joules)
- m is the mass in kg
— — —
Based on the problem, the givens are:
- KE (Kinetic energy) = ? (unknown)
- m (mass) = 2 kg
- v (velocity) = 3 m/s
<h3>Solution:</h3>
To get the velocity, substitute the givens in the formula above then solve.

Therefore, the kinetic energy is 9 Joules.
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
Answer:
Explanation:
We shall apply Stefan's formula
E = AσT⁴
When T = 300
I₁ = Aσ x 300⁴
When T = 400K
I₂ = Aσ x 400⁴
I₂ / I₁ = 400⁴ / 300⁴
= 256 / 81
= 3.16
I₂ = 3.16 I₁ .
Answer:

Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:

So,
Time in which train will come to rest = 20 seconds