Answer:

Explanation:
Given data
Distance d=7.00 ft= 7*(1/3.281) =2.1336m
Initial velocity vi=0m/s
To find
Final velocity
Solution
From Kinematic equation we know that:

Answer:
970 kN
Explanation:
The length of the block = 70 mm
The cross section of the block = 50 mm by 10 mm
The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN
The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN
By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force
The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa
The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa
The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa
The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN
Answer:
Newtons first law
Explanation:
object in rest stays at rest
object in motion stays in motion
Hello There!
It is Spring potential energy. Also called Elastic potential energy.
Hope This Helps You!
Good Luck :)
- Hannah ❤
To solve this problem we will use the related concepts in Newtonian laws that describe the force of gravitational attraction. We will use the given value and then we will obtain the proportion of the new force depending on the Radius. From there we will observe how much the force of attraction increases in the new distance.
Planet gravitational force



Distance between planet and star

Gravitational force is

Applying the new distance,


Replacing with the previous force,

Replacing our values


Therefore the magnitude of the force on the star due to the planet is 