For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
This can be seen through the fact that Aksionov has the ability to seek his own justice many times throughout the story, yet does not take it
Answer: Galileo's laws of Motion determined that the natural state of an object is rest or uniform motion, objects always have a velocity, sometimes that velocity has a magnitude of zero rest. objects resist change in motion, which is called inertia.
Explanation:
Answer:
η = 0.667 = 66.7%
Explanation:
The efficiency of the man can be given by the following formula:
η = output/input
where,
η = efficiency of man = ?
output = potential energy gain of the box = Wh
input = work done by man = Fd
Therefore,

where,
W = weight of box = 200 N
h = height gained by box = 1 m
F = force exerted by man = 60 N
d = length of ramp = 5 m
Therefore,

<u>η = 0.667 = 66.7%</u>
The velocity of the boy when he hits the water at the bottom of the slide is 14 m/s.
<h3>
Velocity of the boy at the bottom of the slide</h3>
The velocity of the boy when he hits the water at the bottom of the slide is calculated from the principle of conservation of energy.
K.E = P.E
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- h is height of the boy
- g is acceleration due to gravity
v = √(2 x 9.8 x 10)
v = 14 m/s.
Thus, the velocity of the boy when he hits the water at the bottom of the slide is 14 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1