Answer:
Closed system, because the speed of the car is as expected in the case where an object has uniform acceleration for a time t
Explanation:
Here in the question it is mentioned that a toy car has an initial acceleration of 2m/s² across a horizontal surface so we can say that it is acted upon by an external force
Assuming that the acceleration is constant and the reason for this assumption is there at the last
The major difference between an open system and closed system is in case of open system there will be transfer of matter and in case of closed system there will be no change in matter of the system
If acceleration is constant in case of closed system we can expect the speed of the car after a time t by using the formula
s = u×t + 0·5×a×t²
where s is the distance travelled
t is the time taken to travel that distance
u is the initial velocity
a is the acceleration of that system
But in case of open system as there will be a change of mass there will be a change in velocity of the system so in this case we cannot expect the speed of the car after a time t
And if the acceleration is not constant then we cannot say that the toy car is an open system or closed system, that is why we are assuming that the acceleration of the toy car is constant
Measurement means weight, size, length, or capacity of something.
<span>Well, since it's in the shape of a wheel and the person walks around the edge of it, they must have a centripetal acceleration. Since a=v^2/r you can solve for "v" using 2.20 as your "a" and 59.5 as your "r" (r=half of the diameter).
</span> a=v^2/r
v=(a*r)^(1/2)=((2.20)*(59.5))^(1/2)=<span>
<span>11.44 m/s.
</span></span><span> After you get "v," plugged that into T=2 pi r/ v. This will give you the 1rev per sec.
</span> T=2 pi r/ v= T=(2)*(pi)*(59.5)/(11.44)= <span>
<span>32.68 rev/s
</span></span> Use dimensional analysis to get rev per min (1rev / # sec) times (60 sec/min).
(32.68 rev/s)(60 s/min)=<span>
<span>1960.74 rev/min
</span></span>
B) droops.
Why?
To maintain balance, you do not need something short so you're balanced well... You need something long and droopy to maintain balance. The pole should be held by your waist and it should be light.
Hope this helps!~