Answer:
.10/KWh
Explanation:
divide 606 by 61.37 and you get .1012...
C is what i always have so ima go with C.
Answer:2.47
Explanation:
So, the beaker weighs 1.40N when filled with water, brine of density weighs about 1.7N, you add the density + water. Have a good day!
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
Answer:
T_finalmix = 59.5 [°C].
Explanation:
In order to solve this problem, a thermal balance must be performed, where the heat is transferred from water to methanol, at the end the temperature of the water and methanol must be equal once the thermal balance is achieved.

where:

mwater = mass of the water = 0.4 [kg]
Cp_water = specific heat of the water = 4180 [J/kg*°C]
T_waterinitial = initial temperature of the water = 85 [°C]
T_finalmix = final temperature of the mix [°C]

Now replacing:
![0.4*4180*(85-T_{final})=0.4*2450*(T_{final}-16)\\142120-1672*T_{final}=980*T_{final}-15680\\157800=2652*T_{final}\\T_{final}=59.5[C]](https://tex.z-dn.net/?f=0.4%2A4180%2A%2885-T_%7Bfinal%7D%29%3D0.4%2A2450%2A%28T_%7Bfinal%7D-16%29%5C%5C142120-1672%2AT_%7Bfinal%7D%3D980%2AT_%7Bfinal%7D-15680%5C%5C157800%3D2652%2AT_%7Bfinal%7D%5C%5CT_%7Bfinal%7D%3D59.5%5BC%5D)