<h3 /><h3>
<u>Answer</u><u> </u><u>above</u><u> </u></h3>
<u>I</u><u> </u><u>cant</u><u> </u><u>send</u><u> </u><u>this</u><u> </u><u>with</u><u> </u><u>no</u><u> </u><u>text</u><u> </u>
<u>Have</u><u> </u><u>a</u><u> </u><u>nice</u><u> </u><u>day</u>
The arrows represent the movement of starting substances
One mole of any element is Avogadro's number, which is 6.02 * 10^23 atoms.
One mole of Calcium is equal to its atomic weight in grams, 1 mole Ca = 40.08 x 1000 mg = 6.02 * 10^23 atoms.
We have 8.6mg of Ca which means 8.6mg / 40,080mg = .00021457 of a mole of calcium.
Now multiply that by Avogadro's number which gives number of atoms = 0.00021457 * 6.02 * 10^23 atoms. So the answer is 1.292 * 10^20 atoms of Ca.
Answer:
ΔH3 = 1/2 (629) - ΔH^0
Explanation:
Given data:
Bond energy of H2 = ΔH1 = 436 Kj/mol
Bond energy of Br2 = ΔH2 = 193 Kj/mol
To find:
Let bond energy of HBr = ΔH3 = ?
Equation:
H2 + Br2 → 2HBr
enthalpy of formation of HBr = ΔH1 + ΔH3 - 2(ΔH3)
ΔH^0 = 436 + 193 - 2(ΔH3)
(436 + 193) - ΔH^0 = 2(ΔH3)
ΔH3 = 1/2 (629) - ΔH^0