1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
14

to remove a tight-fitting jar, megan runs the lid under hot water. What happends to the jar lid when its temperature increases?

Physics
1 answer:
White raven [17]3 years ago
8 0
It expands due to heat and makes it easier to open the jar.<span />
You might be interested in
Density of water 1000kgper m^3 What will be the volume of 3500<br>kg water​
skad [1K]

Answer:

<em>The volume of water is 3.5 cubic meter</em>

Explanation:

<u>Density </u>

The density of a substance or material is the mass per unit volume. The density varies with temperature and pressure.

The formula to calculate the density of a substance of mass (m) and volume (V) is:

\displaystyle \rho=\frac{m}{V}

We are given the density of water as \rho=1,000\ kg/m^3.It's required to find the volume of m=3,500 kg of water. Solving for V:

\displaystyle V=\frac{m}{\rho}

\displaystyle V=\frac{3,500}{1,000}

V=3.5\ m^3

The volume of water is 3.5 cubic meter

5 0
3 years ago
What does the law of conservation of energy state?
pishuonlain [190]
The answer is B. good luck :)
8 0
3 years ago
Read 2 more answers
If the magnitude of the electric field in air exceeds roughly 3 ✕ 106 n/c, the air breaks down and a spark forms. for a two-di
Vlad1618 [11]

Answer: 39.8 μC

Explanation:

The magnitude of the electric field generated by a capacitor is given by:

E = \frac{V}{d}

d is the distance between the plates.

For a capacitor, charge Q = CV where C is the capacitance and V is the voltage.

C =\frac{\epsilon_o A }{d}

where A is the area of the plate and ε₀ is the absolute permittivity.

substituting, we get

E = \frac{Q}{\epsilon_o A}

It is given that the magnitude of the electric field that can exist in the capacitor before air breaks down is, E = 3 × 10⁶ N/C.

radius of the plates of the capacitor, r = 69 cm = 0.69 m

Area of the plates, A = πr² = 1.5 m²

Thus, the maximum charge that can be placed on disks without a spark is:

Q = E×ε₀×A

⇒ Q = 3 × 10⁶ N/C × 8.85 × 10⁻¹² F/m × 1.5 m² = 39.8 × 10⁻⁶ C = 39.8 μC.

8 0
3 years ago
Water, initially saturated vapor at 4 bar, fills a closed, rigid container. The water is heated until its temperature is 360°C.
salantis [7]

Explanation:

Using table A-3, we will obtain the properties of saturated water as follows.

Hence, pressure is given as p = 4 bar.

u_{1} = u_{g} = 2553.6 kJ/kg

v_{1} = v_{g} = 0.4625 m^{3}/kg

At state 2, we will obtain the properties. In a closed rigid container, the specific volume will remain constant.

Also, the specific volume saturated vapor at state 1 and 2 becomes equal. So, v_{2} = v_{g} = 0.4625 m^{3}/kg

According to the table A-4, properties of superheated water vapor will obtain the internal energy for state 2 at v_{2} = v_{g} = 0.4625 m^{3}/kg and temperature T_{2} = 360^{o}C so that it will fall in between range of pressure p = 5.0 bar and p = 7.0 bar.

Now, using interpolation we will find the internal energy as follows.

 u_{2} = u_{\text{at 5 bar, 400^{o}C}} + (\frac{v_{2} - v_{\text{at 5 bar, 400^{o}C}}}{v_{\text{at 7 bar, 400^{o}C - v_{at 5 bar, 400^{o}C}}}})(u_{at 7 bar, 400^{o}C - u_{at 5 bar, 400^{o}C}})

     u_{2} = 2963.2 + (\frac{0.4625 - 0.6173}{0.4397 - 0.6173})(2960.9 - 2963.2)

                   = 2963.2 - 2.005

                   = 2961.195 kJ/kg

Now, we will calculate the heat transfer in the system by applying the equation of energy balance as follows.

      Q - W = \Delta U + \Delta K.E + \Delta P.E ......... (1)

Since, the container is rigid so work will be equal to zero and the effects of both kinetic energy and potential energy can be ignored.

            \Delta K.E = \Delta P.E = 0

Now, equation will be as follows.

           Q - W = \Delta U + \Delta K.E + \Delta P.E

           Q - 0 = \Delta U + 0 + 0

           Q = \Delta U

Now, we will obtain the heat transfer per unit mass as follows.

          \frac{Q}{m} = \Delta u

         \frac{Q}{m} = u_{2} - u_{1}

                      = (2961.195 - 2553.6)

                      = 407.595 kJ/kg

Thus, we can conclude that the heat transfer is 407.595 kJ/kg.

4 0
3 years ago
The scattering of dissolved particles evenly is called
FrozenT [24]

Answer:

the process of that happening is called Dissolving

the substance that is dissolved is called

Solute

5 0
3 years ago
Other questions:
  • In 1610, galileo used his telescope to discover four prominent moons around jupiter. their mean orbital radii a and periods t ar
    15·1 answer
  • 1 pts<br> How can two different nonmetals form a compound?
    7·1 answer
  • What’s the role of moles in weathering??????? HURRY ASAP HURRY PLEASE⁉️⁉️⁉️
    6·2 answers
  • El momento lineal de un coche que viaja hacia el norte a 20m/s es distinto al momento lineal del mismo auto viajando hacia el es
    14·1 answer
  • Letícia leaves the grocery store and walks 150.0 m to the parking lot. Then, she turns 90° to the right and walks an additional
    13·1 answer
  • On classical Hall mobility: In a semiconductor sample, the Hall probe region has a dimension of 0.5 cm by 0.25 cm by 0.05 cm thi
    13·1 answer
  • Moon A has a mass of 3M and a radius of 2R. Moon B has a mass of 4M and a radius of R. What is the ratio of the force of gravita
    6·1 answer
  • If g were 15 instead of 9.81, what would your quads look like?
    8·1 answer
  • You are taking the elevator to 10th floor. Are you in motion.
    5·1 answer
  • HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLEASE HELP PLE
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!